
Numerical simulations of
gravitational dynamics

Eugene Vasiliev

Oxford University &
Lebedev Physical Institute

XII School of modern astrophysics 2016

Seminar 1.
Overview of N-body simulation software

and the AMUSE framework



Types of software for performing N-body simulations

Typical workflow for numerical experiments:

0. Formulate the physical problem to explore.

1. Set up the initial conditions.

2. Run the dynamical simulation.

3. Analyze the results (consistency checks, scientific output).

4. Prepare the data for publication (tables, figures and movies).

Each of these steps, in general, requires a different software,
and the data needs to be stored and exchanged between steps.



Preparing initial conditions

I Planetary dynamics:
small number of bodies – initialize directly (e.g., using JPL

ephemerides for Solar system).

I Star clusters:
typically use analytic spherical models (Plummer, King, etc.) with a

known distribution function, and the rejection sampling method to

draw particles from it; often this is built into the N-body integrator.

I Galaxy evolution or mergers:
various methods for creating the initial conditions in dynamical

equilibrium, with specific tools for each method (example:

Schwarzschild orbit-superposition method – smile software).

I Cosmological simulations:
compute the power spectrum of initial fluctuations (e.g., cmbfast,

camb), then convert it to the density and velocity fields (e.g., grafic).

http://ssd.jpl.nasa.gov/?ephemerides
http://ssd.jpl.nasa.gov/?ephemerides
http://td.lpi.ru/~eugvas/smile/
http://camb.info/
http://web.mit.edu/edbert/


N-body simulation codes

I Planetary dynamics:
Swift; Mercury; Rebound.

I Star clusters:
NBODYx series of codes from Sverre Aarseth
(x = 1..7, the parallel version is NBODY6++);
kira from the Starlab framework; HiGPUs and φGRAPE
(both require hardware acceleration, included in AMUSE framework).

I Galaxy and cosmological simulations
(collisionless, often include hydrodynamics):

GADGET-2; PKDGrav2/Gasoline;
gyrfalcON (included in NEMO framework);
Bonsai (GPU-accelerated, included in AMUSE);
RAMSES; Enzo; FLASH; Athena; Gizmo;

non-public but well-known:
ART, GADGET-3, AREPO, HACC, GOTPM, 2HOT, . . .

http://www.boulder.swri.edu/swifter/
http://www.arm.ac.uk/~jec/
https://github.com/hannorein/rebound
http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://github.com/nbodyx
http://www.sns.ias.edu/~starlab/
http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
http://www.mpa-garching.mpg.de/gadget/
https://hpcforge.org/projects/pkdgrav2/
https://github.com/treecode/Bonsai
http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html
http://enzo-project.org
http://www.flash.uchicago.edu/site/flashcode/
https://trac.princeton.edu/Athena/
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html


N-body analysis tools and frameworks

I yt – Python-based visualization package.

I pynbody – another Python-based environment mainly for
analysis of cosmological simulations.

I Starlab – framework for collisional dynamics
(collection of individual programs coupled in a UNIX toolchain style).

I NEMO – framework for collisionless dynamics with a similar
architecture; see also a stand-alone interactive 3d visualization
program glnemo2.

I AMUSE – Python-based meta-framework that enables interaction
between many separate simulation codes.

http://yt-project.org
https://github.com/pynbody
http://www.sns.ias.edu/~starlab/
http://bima.astro.umd.edu/nemo/
https://projets.lam.fr/projects/glnemo2
http://amusecode.org


Python as the glue language

+ De-facto standard in the wider astronomical community,
alternative to proprietary software such as IDL or MATLAB.

+ Widespread also in a more general context,
plenty of resources in the internet.

+ Well suited both for quick coding of short one-time tasks
and for development of complex applications.

– Intrinsically less efficient in CPU- or memory-intensive tasks,

+ however this is compensated by third-party libraries (notably numpy),
and by the possibility of coupling with closer-to-hardware languages.

+ High-quality plotting facilities (matplotlib).

I Most convenient in data analysis and visualization tasks,
but also can be used as the glue language (e.g., in AMUSE).

I Can be used both in the interactive or scripting modes.



Architectures of simulation software

1. Historically, most scientific software was developed as
monolithic codes including all required physical processes,
quickly growing in complexity.

2. Alternatively, software frameworks such as NEMO and Starlab

provided a large collection of relatively small tools for data
manipulation, common data exchange formats and parameter
handling conventions. But still the core simulation programs
are monolithic.

3. Analysis and visualization of existing simulation data can be
done within self-contained environments such as yt, pynbody.

4. Run-time coupling of existing independent simulation codes is
a very challenging task – but it has been successfully
implemented in the AMUSE framework.



AMUSE framework: rationale

Task:

I To have a unified interface for a variety of “community” codes,
with the possibility of changing a single line in the script to use a
different simulation code.

I To enable the run-time interaction of several independent codes
from different domains (e.g., coupling of gravity and hydrodynamic

solvers, or a collisional simulation of a star cluster moving in the

gravitational field of two merging galaxies).

Challenges:

I Different data representation strategies, unit systems, coding
conventions and languages.

I Large spatial and temporal dynamic range, different time
integration approaches.

I Reasonably low overhead (both CPU and communication).



AMUSE framework: architecture

I User script or interactive session in Python.

I The library data handling layer.

I

MPI
Wrapper module for the community code.

I The actual community code
(with minor modifications).

Physical domains:

Stellar dynamics Stellar evolution

Hydrodynamics Radiative transfer



Interlude: guidelines for [scientific] programming

I Coherent coding style
(programming paradigm, naming conventions, choice of libraries, . . . )

I In-code documentation
for both the interfaces and most important implementation details.

I Test suites and examples of usage.

I Layered approach for the design of the program;
clear and efficient definition of abstractions and interfaces,
allowing for interchangeability of individual blocks (loose coupling).



Hands-on session #1
Installing and running AMUSE

(with updates following the chaotic experience of the first day).



Basic facts about Python
Python can be used in either interactive or scripting modes:

I bash$ python

Python 2.X.X blabla

>>>
now you may type your commands here and they will be executed
one-by-one.
More conveniently, you may start the interpreter with the paths to
the AMUSE library correctly set up, by typing amuse instead of
python (this runs a simple shell script that you may find in the
AMUSE root directory), or you may simply add the relevant
directories to your PYTHONPATH environment variable
permanently (e.g. in bash.rc).

I bash$ python script.py

runs the given script non-interactively (or do it with amuse command).

I Finally, you may load and execute the script from within the
python interactive session by typing
>>> execfile("script.py")



Basic facts about Python (2)

I It is also possible to run an interactive Python script from a
browser (called IPython notebook – it is launched e.g. by
amuse-tutorial program).

I Note that either way, when you start python or amuse, you still
need to import AMUSE and other libraries at the beginning of your
script, e.g., as
>>> from amuse.lab import something

(then you may use something without a namespace prefix), or
>>> import amuse.lab, numpy, matplotlib, ...

(then you will need to add amuse.lab. prefix to something).
I Python commands need to fit into a single line, or alternatively

continue from the following line after a backslash put at the end of
the previous one (as used in the first example scripts to break up
long lines). If you merge the split lines, you need to delete the \
symbol.

I # is the comment symbol (until the end of line), triple quotes ”””
open and close a multi-line comment block.



Basic facts about Python plotting library

The standard plotting library is matplotlib, which has a module
named pyplot with a very similar syntax to MATLAB. So you will
typically use the sequence of commands like
import matplotlib.pyplot as plt

plt.figure(figsize=(10,10))

plt.plot(xcoords, ycoords, ’.’) # plot points not lines

plt.show()

with more formatting commands possibly inserted before show().

The show() command opens an interactive plotting window that
will block any further execution of the script until it is closed.

Alternatively, you may save the plot into a png or pdf file:
plt.savefig("figure.png", dpi=100)

Or if you want to use Gnuplot from within Python, you need the
gnuplot-py package (download and install separately);
finally, you may export the data to a text file and plot it with
Gnuplot or your favourite plotting program.

http://matplotlib.org
http://gnuplot-py.sourceforge.net/


Troubleshooting

I Some people have reported that matplotlib.pyplot.show()
command does nothing. This may be fixed by choosing a different
output back-end, adding the following lines at the beginning of the
script:
import matplotlib

matplotlib.use(’webagg’) # or maybe ’tkagg’

I Scripts further down in this pdf file may mess up some symbols
(quotes and extra spaces) – you may need to edit it after
copypasting.

I The AMUSE module for exporting binary NEMO files is buggy.
Delete the files nemobin.py and nemobin.pyc in
amuse/lib/python2.7/site-packages/amuse/io/ and replace
the former with the corrected file attached at the school webpage.
You only need it if you want to use the glnemo program for
visualizing the simulation data (quite handy).



Example AMUSE script (1a)

#!/usr/bin/python

"""

Example AMUSE script to plot a Plummer sphere

"""

import amuse.lab , amuse.plot , pylab , matplotlib

bodies = amuse.lab.new_plummer_model (1000)

pylab.figure(figsize =(5 ,5))

amuse.plot.plot(bodies.x, bodies.y, ’.’)

pylab.xlim(-2, 2)

pylab.ylim(-2, 2)

pylab.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0



Same example using Gnuplot (1b)

#!/usr/bin/python

"""

Example AMUSE script to plot a Plummer sphere

"""

import amuse.lab , Gnuplot

bodies = amuse.lab.new_plummer_model (1000)

plot=Gnuplot.Gnuplot ()

plot("set terminal x11") # enable interactive

plot("set ticslevel 0") # 3d plotting window

plot("set xrange [-2:2]")

plot("set yrange [-2:2]")

plot("set zrange [-2:2]")

# need to manually convert an array of dimensional

# quantities into a simple python array of numbers

plot.splot(bodies.position.value_in \

(amuse.lab.nbody_system.length ))

r a w i n p u t () # pause execution



Working with units (2)

#!/usr/bin/python

"""

Create a Plummer model in physical units

"""

from amuse.lab import units , \

nbody_system , new_plummer_model

Mass = 1e5 | units.MSun

Radius = 10 | units.parsec

bodies = new_plummer_model (1000, \

nbody_system.nbody_to_si(Mass , Radius ))

Ekin = bodies.kinetic_energy ()

Epot = bodies.potential_energy ()

p r i n t "Ekin = %f Msun*(km/s)^2" % \

Ekin.value_in(units.MSun*units.kms **2)

p r i n t "Epot = %f Msun*(km/s)^2" % \

Epot.value_in(units.MSun*units.kms **2)

p r i n t "Virial ratio = %f" % (-2*Ekin/Epot)



Assignments

0. Download and install AMUSE from http://amusecode.org

Run the example scripts (1a and 2).

A*. (optional) Download glnemo2 visualization program from
https://projets.lam.fr/projects/glnemo2,
export the generated Plummer model to a NEMO file using

amuse.io.write_set_to_file(bodies , \

"plummer.nemo", format="nemobin")

then load and display this file in glnemo2.

1. Estimate the density profile of the generated Plummer model,
compare to the expected functional form

ρ(r) =
3

4π

M

r3
0

(
1 +

r2

r2
0

)−5/2

with M = 1, r0 = 3π/16

either by eye, or using a rigorous statistical test
(e.g., Kolmogorov–Smirnov).

http://amusecode.org
https://projets.lam.fr/projects/glnemo2


Notes

I Assignments with a letter and an asterisk are optional (i.e. do

not bring bonus points, but only the customer satisfaction...)

I You may use any of your favourite plotting programs to
display results (gnuplot and glnemo are just two suggestions,
but they are optional). Make sure to learn how to export
particles at least to a text file (format="txt").

I When estimating the density profile from particles using a
histogram, remember that this is a 3d distribution
(hint: need to divide the number of particles by the volume of the

bin, not by the radius).

I K–S tests are designed for the cumulative mass profile, and
work best without any binning.



Numerical simulations of
gravitational dynamics

Eugene Vasiliev

Oxford University &
Lebedev Physical Institute

XII School of modern astrophysics 2016

Seminar 2.
First experiments with N-body integrators in AMUSE



Some of the N-body integrators available in AMUSE

name type timestepping language CPU/GPU parallel1

Hermite direct shared, var. C++ +/– +
ph4 direct block C++ +/+ +
NBODY6++ direct block+reg F77 +/? ?
PhiGRAPE direct block F77 +/+ +
HiGPUs direct block C++ –/+ +
Huayno sympl. block C +/+ –
Mercury MVS fixed/adaptive F77 +/– –
BHTree tree shared, fixed C++ +/– –
Gadget2 tree block C +/– +
Bonsai tree block C++ –/+ +
Ramses grid block F90 +/– +

Note: not all integrators are available on all systems,
and not all of them are suitable for all problems.

1by default, all codes are run in a single-thread mode;
to enable parallel execution, you need to construct the instance of the code
with an extra parameter such as number of workers=4.



Assignments – star clusters

2. Evolve a Plummer model with N = 1000 for several Tdyn, using
as many variants of N-body integrators as possible.

Experiment with the parameters of integrators as well
(fixed timestep size or accuracy parameter η for variable timestep,

smoothing length, etc.), determine the order of integrator(s).

Perform basic consistency checks: accuracy of energy and
momentum conservation, virial ratio.
What are the suitable values of timestep for different methods?
Which integrator is the most efficient?

B*. Modify the example script to evolve the system for several
intervals of time, recording the diagnostic information after each
sub-interval. Explore the growth of error as a function of time
for various methods, explain your findings.

C*. Display the evolution of the system as a movie or a sequence of
images, or using glnemo visualization program
(will need to save the output as a series of text or NEMO files, or

create an animation directly from Python).



Assignments – planetary systems

3. Create an N-body model of the Solar system, using the
positions/velocities of 8 planets at the present time (take from
JPL website, or from the AMUSE module
amuse.ext.solarsystem). Evolve it forward for 1000 years
with a suitable integration method(s), check the energy
conservation and make sure that the system remains stable.
Plot the evolution of eccentricities of all planets (use the Kepler

module from amuse.lab to compute the orbital elements, see
the examples in AMUSE primer).

D*. Now let’s play god and imagine that the planets have been
formed more massive. (It’s unlikely from astrophysical grounds
but we’ll ignore it). Multiply planetary masses (but not the mass
of Sun) by a factor of 10,100,... and repeat the integration for
100–1000 years. At which point does the system become
unstable? what happens to it?
(Hint: consider the Hill radii of each planet).

http://ssd.jpl.nasa.gov/?ephemerides
https://en.wikipedia.org/wiki/Hill_radius


Basic script for simulating a N-body system

#!/usr/bin/python

import amuse.lab

bodies = amuse.lab.new_plummer_model (100)

totaltime = 1.0 | amuse.lab.nbody_system.time

gravity = amuse.lab.ph4()

gravity.parameters.timestep_parameter = 0.01

gravity.particles.add_particles(bodies)

Etot_init = gravity.kinetic_energy + \

gravity.potential_energy

gravity.evolve_model(totaltime)

Ekin = gravity.kinetic_energy

Epot = gravity.potential_energy

Etot = Ekin + Epot

p r i n t "Time=", gravity.get_time ()

p r i n t "Virial ratio=", (-2*Ekin/Epot)

p r i n t "dE/E=", (Etot_init -Etot)/Etot

gravity.stop()



Notes

I Hint: read the AMUSE primer for more details and examples.
I If you use different N-body integrators, you will discover that they

often have inconsistent parameter naming schemes, e.g. what is
timestep parameter in ph4, becomes dt param in hermite

(use print(gravity.parameters) to find it out, or check the
description on the website).

I Also, make sure that you use the same initial snapshot for all of them
(since new plummer model creates a different realization each time).

I All dimensional quantities in AMUSE must be explicitly assigned a
correct dimension (even if using “standard” N-body units), as follows:
time = 0 | amuse.lab.nbody system.time

When dealing with physical units, you need to create an
appropriate converter object and provide it as an extra parameter:
converter = amuse.lab.nbody_system.nbody_to_si( \

1 | amuse.lab.units.MSun, 1 | amuse.lab.units.AU)

gravity = amuse.lab.Mercury(converter)

To get an ordinary number from a dimensional quantity, use
position.value in(amuse.lab.units.km)

http://www.amusecode.org/raw-attachment/wiki/primer/AMUSEPrimer.pdf
http://www.amusecode.org/doc/reference/available-codes.html
http://www.amusecode.org/doc/tutorial/units.html


Notes

I Remember that the AMUSE framework and the N-body codes live
in separate worlds: particles created in the script and fed to the
integrator using add particles are not automatically updated
when the N-body system is evolved. You need to open a
communication channel and update them manually:

gravity.particles.add_particles(bodies)

channel = gravity.particles.new_channel_to(bodies)

gravity.evolve_model(time)

channel.copy() # now bodies contain updated data

I The evolve model(time) method of a gravity code advances the
system up to the given time, not by the given time, i.e. if you call
it once again with the same argument, it does nothing since the
internal clock is already at the required position.

http://www.amusecode.org/doc/interactive_tutorial/07-Channels.html


Numerical simulations of
gravitational dynamics

Eugene Vasiliev

Oxford University &
Lebedev Physical Institute

XII School of modern astrophysics 2016

Seminar 3.
Simulating a sinking satellite



Dynamical friction

Drag force acting on a massive body M moving with velocity v in
the background of lighter objects with density ρ:

Mv̇ = −4π G 2 M2 ρ ln Λ

v2
.

We simulate the sinking of a satellite to the center of a galaxy.

The main galaxy is spherical with a “broken power-law” density

profile ρ ∝ r−γ (rα + rα0 )(γ−β)/α;

the mass of the satellite Msat is Mgal � Msat � Mgal/N ≡ Mpart.

In the first example, we model the satellite as a point mass.



Dynamical friction: initial conditions

#!/usr/bin/python

from amuse.lab import *

converter = nbody_system.nbody_to_si( \

1e11 | units.MSun , 10. | units.kpc)

# initial conditions for the main galaxy

galaxy = new_halogen_model (10000 , \

converter , alpha=1, beta=6, gamma =1)

# initial position and velocity of the satellite

satellite = Particle ()

satellite.mass = 5e9 | units.MSun

satellite.position = [10., 0, 0] | units.kpc

satellite.velocity = [0, 160, 0] | units.kms

particles = Particles ()

particles.add_particle(satellite)

particles.add_particles(galaxy)



Dynamical friction: parameters of the integrator

# N-body integrator: use a tree code

gravity = BHTree(converter)

# set the softening length

gravity.parameters.epsilon_squared = \

(0.5 | units.kpc )**2

# set the (constant) timestep

gravity.parameters.timestep = 0.5 | units.myr

gravity.particles.add_particles(particles)

# open a communication channel from code to AMUSE

channel = gravity.particles.new_channel_to( \

particles)

How to choose an appropriate softening length and timestep?
ε ' (ρ/Mpart)

−1/3, ∆t . ε/v , v . vescape ≡
√
−2Φ(0)

print "Escape velocity: ", \
((-2*min(galaxy.potential()))**0.5).value in(units.kms)

This gives vescape ' 500 km/s and thus ∆t must be . 1 Myr.



Dynamical friction: assignment

4. Complete the script with the loop that evolves the model for
few×108 yr (split into many smaller intervals of time, storing the
position of the satellite and the galaxy center after each interval).
Plot the trajectory of the satellite and distance from the galaxy
center as a function of time.
Compare with the predictions of Chandrasekhar’s formula.



Numerical simulations of
gravitational dynamics

Eugene Vasiliev

Oxford University &
Lebedev Physical Institute

XII School of modern astrophysics 2016

Seminar 4.
Simulating a tidally-disrupted satellite



Code coupling in AMUSE

We want to model a globular cluster or a satellite galaxy moving in
the potential of the main galaxy.

The internal dynamics of the cluster should be followed with a
high-accuracy direct-summation code, and the dynamics of the
galaxy – with a more approximate tree code, and we want them to
interact.

In AMUSE this can be realized with the concept of bridge
integrator, which uses operator-splitting approach (similar to a
symplectic integrator):
Hfull = Hfirst +Hsecond, where each part is evolved by an
appropriate integrator, and the interaction between subsystems is
implemented by kicking particles of first subsystem periodically
with the force from the second subsystem and vice versa.

http://www.amusecode.org/doc/reference/bridge.html


Bridge simulation: initial conditions

from amuse.lab import *

converter_gal = nbody_system.nbody_to_si( \

1e11 | units.MSun , 10. | units.kpc)

particles_gal = new_halogen_model (10000 , \

converter_gal , alpha=1, beta=6, gamma =1)

gravity_gal = BHTree(converter_gal)

gravity_gal.parameters.epsilon_squared = \

(0.5 | units.kpc )**2

gravity_gal.parameters.timestep = 0.5 | units.myr

gravity_gal.particles.add_particles(particles_gal)

converter_sat = nbody_system.nbody_to_si( \

5e9 | units.MSun , 2. | units.kpc)

particles_sat = new_king_model (500, \

6.0, converter_sat) # IC for the satellite

particles_sat.x += 10. | units.kpc

particles_sat.vy += 160 | units.kms

gravity_sat = ph4(converter_sat)

gravity_sat.particles.add_particles(particles_sat)



Bridge simulation: defining the bridge

from amuse.couple import bridge

gravity_all = bridge.Bridge(timestep =0.5| units.myr)

# define interactions between subsystems

gravity_all.add_system(gravity_gal , (gravity_sat ,))

gravity_all.add_system(gravity_sat , (gravity_gal ,))

f o r i i n range (1000):
gravity_all.evolve_model(gravity_all.timestep*i)

# compute the center -of -mass of the galaxy ...

cm_gal = gravity_gal.particles.center_of_mass ()

# ... and the (bound part) of the satellite

cm_sat = gravity_sat.particles.bound_subset( \

unit_converter=converter_sat ). center_of_mass ()

p r i n t "Time=", gravity_all.model_time , \

"Offset=", cm_sat -cm_gal



Tidal disruption: assignment

5. Complete the script in a similar way to the previous one;
compare the efficiency of the orbit decay rate between the cases
of a point mass and a satellite with internal structure.
Estimate the tidal disruption radius (distance from the galactic

center at which the tidal force is strong enough to unbind the satellite;

assume that it is a uniform-density sphere with radius R = 1 kpc and

mass M = 5× 109 M�). Keyword: Hill or Roche radius.



Numerical simulations of
gravitational dynamics

Eugene Vasiliev

Oxford University &
Lebedev Physical Institute

XII School of modern astrophysics 2016

Seminar 5.
Concluding remarks



Test (30 min)

1. Estimate the relaxation time for the nuclear star cluster at the
center of the Milky Way, assuming M = 4× 107 M�,R = 4 pc.
What method would you use to simulate its evolution?

2. You want to study the evolution of spiral structure in a disk galaxy
(mass M = 1011 M�, radius R ' 5 kpc, thickness h ' 0.5 kpc,
time T = 1010 yr). Which kind of method would you use?
Motivate your choice of code and its parameters.

3. What are the reasons for using gravitational softening in N-body
simulations, and when are they applicable?

4. Sagittarius dwarf galaxy is being tidally stripped by the Milky Way,
producing a prominent tidal stream across the sky. Estimate the
radius at which it will be entirely disrupted, assuming that the
potential of the Milky Way halo has a form Φ(r) = 1

2v
2
c ln(r),

with vc = 200 km/s, and that the density profile of the dwarf

galaxy is given by the Plummer model ρ(r) = 3
4π

M
r3
0

(
1 + r2

r2
0

)−5/2
,

with M = 109 M� and r0 = 1 kpc.


