
N-body simulations tutorial
by Eugene Vasiliev

Version of May 7, 2013

This tutorial is intended for students that don’t have any prior experience
with computer simulations and want to get familiar with state-of-the-art
techniques of computer modelling in the field of gravitational dynamics.

Before discussing practical aspects of computer simulations, I’d like to
name a few essential references to read:

• A short introduction to the gravitational N-body simulations is avail-
able on Scholarpedia: http://www.scholarpedia.org/article/N-body

• Binney & Tremaine, Galactic dynamics (2008) – a “must read” for
everyone whose research is related to stellar dynamics. It’s a huge book
covering many aspects of contemporary theoretical studies of structure
and evolution of stellar systems, and also includes a good introduction
to numerical methods used in the simulations.
http://books.google.ru/books?id=6mF4CKxlbLsC

• Heggie & Hut, The gravitational million-body problem (2003) is mostly
devoted to the evolution of star clusters from various perspectives, both
from theoretical point of view and with regard to modelling techniques.
A few chapters are available at
http://www.ids.ias.edu/˜piet/act/astro/million/index.html

• A very interesting and creative project is Art of computational science
by Makino & Hut: http://www.artcompsci.org/kali/development.html
– it is a series of lectures, written in the form of informal dialogs,
devoted to practical aspects of writing and running simulation tools,
focused on “trial and error” way of achieving the goal, rather than
giving the best approach right away. This project is not finished and
hasn’t been updated for quite a while, but even the existing chapters
are exciting to read.

• A pretty good recent review article, covering all essential aspects of
gravitational N-body simulations, by Dehnen & Read (2011) – perhaps
the most balanced and not too long introduction at the beginner’s level.
http://arxiv.org/abs/1105.1082

Some students would jump into the world of gravitational N -body sim-
ulations by starting to write their own integrator. This is perhaps not the
best way of doing serious research, at least not until you have spent plenty of
time getting familiar with existing software tools and approaches. However,
it may by difficult to navigate in the wealth of available codes and programs;
here I’ll give a short introduction to this topic.

Central to the N -body simulation is the program and hardware that
integrates the coupled equations of motion for N particles. There are several

methods for doing it with various degree of complexity and accuracy. Broadly
speaking, there are a few principal approaches:

• Direct integration: force on each particle comes from summing up con-
tributions from all other N − 1 particles; therefore, the cost scales as
N2. This is presently the only method that can efficiently deal with
binary and multiple stars (by using regularization techniques). It is of-
ten coupled with special hardware (presently, GPU cards) to speed up
computation. These codes are often used in star cluster dynamics or in
other contexts where multiple stars and collisional (relaxation) effects
are important, sometimes coming with modules for stellar evolution.
Examples of this category include:

– the famous NBODYn set of programs by Sverre Aarseth, where
n ranges from 1 to 7 (these are not successive versions of the
same program, but feature rather different algorithms). Link:
http://www.ast.cam.ac.uk/˜sverre/web/pages/nbody.htm

– ϕGRAPE – an efficient hardware-accelerated directN -body paral-
lel code, or its version with regularization suitable for studying sys-
tems around supermassive black holes. http://www-astro.physik.tu-
berlin.de/˜harfst/index.php?pid=8 (also available as part of AMUSE
project, see below)

– kira, an N -body integrator which can handle binary and multiple
stars, part of the Starlab toolbox (see below).

– HiGPUs, a recent GPU-accelerated parallel code.
http://astrowww.phys.uniroma1.it/dolcetta/HPC.html (also avail-
able as part of AMUSE).

• Tree-codes make use of the fact that to compute the force at a given
position coming from a distant set of many particles, one may replaced
them by a single extended massive point. All particles in the simulation
are arranged in a hierarchical tree structure and the force evaluation
walks this tree down to a given level of detail; the cost scales as N logN
but this only becomes competitive with direct N -body methods at N &
103− 104. These codes are mainly used in collisionless simulations (i.e.
galactic encounters, spiral structure formation, cosmology), and often
are coupled with a SPH gas-dynamics solver. Examples:

– GADGET2, the most well-known general-purpose code which is used
in various contexts, from cosmological simulations down to galac-
tic scales. Includes hydrodynamics module. Actually it uses a hy-
brid Tree-Mesh approach. http://www.mpa-garching.mpg.de/gadget/

– pkdgrav, a tree-code for cosmological simulations. Hydro version
is called gasoline. http://pkdgrav2.org/

– gyrfalcON, a very fast (but not parallelized, unlike the previous
two entries) code for galaxy dynamics. Part of the NEMO toolbox
(see below).

– bonsai, a GPU-accelerated tree code.
http://castle.strw.leidenuniv.nl/software.html

• Grid-based codes compute gravitational force on a cartesian grid (most
often, with possible adaptive refinement in denser regions). They are
often used in cosmological simulations, but sometimes also in galactic-
scale problems. They are naturally coupled to AMR (adaptive mesh
refinement) hydrodynamic solvers.

– Enzo is a multi-purpose flexible code for a variety of astrophys-
ical problems, well documented and extendable. http://enzo-
project.org/

– RAMSES is a cosmological simulation code with a MHD module.
http://www.itp.uzh.ch/˜teyssier/Site/RAMSES.html

– FLASH is a hydrodynamical code primarily targeted at modelling
stellar collisions and includes thermodynamics and nuclear physics
modules. http://www.flash.uchicago.edu/site/flashcode/

• Planetary dynamics requires very high accuracy, symplectic integration
methods to avoid buildup of secular errors over many thousands of
orbits.

– mercury is a monolithic code for simulating planetary systems.
http://www.arm.ac.uk/˜jec/

– SyMBA/Swifter is another planetary code using the mixed-variable
symplectic (MVS) integrator. http://www.boulder.swri.edu/swifter/

However, the N -body integrator is just one part of the workflow; typically
one also needs tools to create initial conditions, analyze and visualize the
results of simulations, keep and exchange data in some common format, etc.
There are several larger toolboxes that allow to build an entire simulation
environment suitable for these purposes.

• NEMO is an almost 30-years-old suite of software tools to manageN -body
and hydrodynamical simulations. It is designed in the UNIX toolchain
style, that is, it has numerous utilities to perform simple tasks, which
can be connected via input/output pipes to achieve more complex
data processing needs. It includes an efficient tree-code integrator
(gyrfalcON) and a nice visualization tool (glnemo2). http://bima.astro.umd.edu/nemo/

• Starlab – a toolbox with a similar architecture, targeted primary to
star cluster dynamics (including stellar evolution and binary system
treatment). http://www.sns.ias.edu/˜starlab/

• AMUSE is a toolbox based on Python, with a uniform interface to a va-
riety of “legacy” codes written in various languages, providing efficient
data handling, conversion and visualization using high-level Python
scripting. The distribution includes adapted versions of many stellar
dynamical and stellar evolution codes. Primarily targeted for star clus-
ter dynamics. http://www.amusecode.org/

1 Getting started with NEMO

1. Download and install NEMO toolbox (http://bima.astro.umd.edu/nemo/
). For some reason, it doesn’t work correctly in bash, use csh/tcsh

as your shell instead. Sadly, the installation does not always pro-
ceed as planned: on some systems several crucial components (notably
gyrfalcON) do not compile without errors; for the present, I don’t
have an universal solution except for trying a different version of Linux
and/or compiler (perhaps it’s better to experiment in a virtual ma-
chine).

2. There is extensive online documentation covering many individual pro-
grams and functions. Generally, programs may be invoked in a toolchain,
piping input/output channels to perform successive operations on the
data.

3. Programs usually accept a multitude of arguments using the syntax
> snapblahblah in=infile out=outfile param=xxx

A brief summary of parameters may be obtained by
> snapblahblah help=h

4. The primary data exchange format in NEMO are snapshot files, which
contain data from one or more moments of time; data usually include
positions, velocities and masses of particles, but may also contain den-
sity, gravitational potential and other auxiliary information. A useful
tool for looking at the content of snapshot file is
> tsf filename

It dumps the first few entries in each data array, which is useful to
get the idea what kind of data are there. To export the selected data
arrays to a text file, use
> snapprint filename tab=outputtext options=(list-of-parameters)

[times=t1,t2,t3:t4]

Here options specifies the quantities to be printed (e.g. t,x,y,z,vx,vy,vz,m,phi,dens,
etc.), timesmay filter out only certain time moments (for snapshot files
which contain data at several moments of time).
Each snapshot file also has a header which keeps track of all operations
that were performed on the data. It can be accessed by
> hisf filename

5. To create an N -body snapshot, one may simply write down positions,
velocities and masses in a text file, then issue
> tabtos in=infile.txt out=outfile.nemo block1=x,y,z,vx,vy,vz,m

which converts the text file into a snapshot file; block1 gives the order
of data fields, one particle per line. Important: text file must have
UNIX line endings (use dos2unix to convert CR/LF to LF).
Exercise: create a text file with a few points, convert it to NEMO
format, display the contents of the snapshot file by tsf.

6. A more clever way of creating snapshots is using mkxxxx series of pro-
grams, which generate equilibrium models for various density profiles.
To create a 1000-body Plummer sphere, use
> mkplummer out=file.out nbody=1000

7. To visualize the snapshot file, use glnemo2 program, which is an in-
teractive OpenGL-based rendering tool. It can display snapshots at a
given moment of time or in motion (we will feed it with movies shortly).

2 Running and analyzing a simple simulation

1. There are severalN -body integrators included in NEMO. A good choice
for collisionless simulations (those in which we are ignoring and sup-
pressing close encounters) is gyrfalcON; for small-N systems to be
evolved in exact gravity one may use newton0. Let’s start with the
latter.

2. N -body units: in many cases it is convenient to work in dimensionless
units, setting the gravitational constant G = 1 and using the total mass
of the system to be unity (the latter requirement is not necessary but
just convenient).
Exercise 2: Set up a Keplerian system composed of two stars, of masses
0.9 and 0.1, on a circular orbit around each other. Let the first body be
located at origin and the second – at (1,0,0). Compute what velocities
should each body have to be on a circular orbit. Create a text file and
then a NEMO snapshot from it.
To ensure that the system indeed has been set up properly, check the
virial ratio [what is it and what does it tell about the system?] by the
following command:
> addgravity snapshot.nemo - eps=0 | snapvratio -

A few things are worth mentioning here. First, parameters in=xx and
out=.. are typically the first and the second parameters for a program,
and as such, one may omit their names and just type in the values.
Second, replacing a filename with a dash - means that we pass the data
to standard output and in the second command take it from standard
input: this is the UNIX pipeline in action. Third, vertical line | is just

the way to make the toolchain with piping.
The output of snapvratio should contain 2T/W in the second field in
the line, and this value should be [close to] unity.

3. Now we may run the binary system for a few orbits to see it moving.
> newton0 in=binary.nemo out=binary_out.nemo t_end=100

dt_major=0.25 >/dev/null

Here we have run the simulation using the simple direct N -body inte-
grator up to time=100 [how many orbital periods is it?], making output
each 0.25 time units. It dumps a lot of debug info to stderr, that’s why
I’ve redirected it to /dev/null (at first run you probably should not
ignore the log messages, but later may safely discard them).

4. Take a look at the results in glnemo2. (There is an option to record
and display orbits, try it!). A more physical way of checking the result
is again by displaying the total energy and virial ratio as a function of
time. To this end, type
> snapvratio binary_out.nemo

5. Now let’s create an eccentric binary system. One may re-write the text
file input, or use one of many snapshot transformation tools available
in NEMO. For instance:
> snapscale binary.nemo binary_ecc.nemo vscale=0.2

multiplies velocities by a factor 0.2, to make orbits highly eccentric.
Make another run with these initial conditions and check the results.
In my case, the integration accuracy wasn’t sufficient and the system
has instantly blown up, manifestly violating total energy conservation.

6. To remedy this, one should change the accuracy parameter eta_acc.
What is the value at which the system is evolved more-or-less correctly?
what is the behaviour of energy error with time and how does it depend
on the accuracy parameter? what can you conclude about the order of
numerical integrator?

7. A better way of dealing with such a system is to use regularized two-
body integrator, newton0reg. Try it with various accuracy parameters.
What is the scaling of error with η?

3 Exploring the future of the Solar System

1. The problem of the long-term evolution of our Solar System is a rather
complicated one; in addition to a very high accuracy integrator using
specialized symplectic methods, one needs to take into account other
effects such as tidal interactions in the Earth-Moon system and the
general relativity. Moreover, since almost any N -body system with
N ≥ 3 is chaotic, predictions may only be probabilistic and based on

an ensemble of possible evolution tracks. Here we instead imagine an
unlikely but disastrous scenario that a nearby star had a close approach
with our Sun, and what is the outcome for the planetary system.

2. To start with, create a model of eight planets orbiting the central
star. You may find the ephemerides of all solar system bodies at
http://ssd.jpl.nasa.gov/horizons.cgi – there is an option to give the
output in cartesian coordinates, relative to the barycenter of Solar Sys-
tem. The output is in physical units (e.g. km/s or a.u./day), and
we want the simulation to be run in dimensionless units, say, with the
mass of the central object as unity, and the time unit of one year. [what
would be the scaling of distance unit in this system?]. Create a system
of nine points and check that planets do move on quiet, almost circular
orbits.

3. Now let’s play god and imagine that the planets have been formed more
massive. (It’s unlikely from astrophysical grounds but we’ll ignore it).
Multiply planetary masses (but not the mass of Sun) by a factor of
10,100,... and repeat the integration for 100–1000 years. At which
point does the system become unstable? what happens to it?
A useful physical criterion for the instability is that the Hill spheres of
adjacent planets overlap in radius. The meaning of the Hill radius is
that a third body within this radius feels more gravity from the planet
than from the sun; for instance, in the case of Earth rHill ≃ 1.5×106km,
while the radius of lunar orbit is ∼ 4 times smaller, so the Moon is
indeed orbiting Earth. Obviously, when the planets are massive enough
to feel each other on a close approach, the system becomes unstable.
Check whether the onset of instability corresponds to the overlap of
Hill spheres, and for which planets.

4. Now let’s put a second star, of 1M⊙, on an hyperbolic orbit which
brings it into the planetary system. Let the star approach in z direc-
tion (perpendicularly to the ecliptic plane) with some velocity v at the
impact parameter b (it is the shortest distance the star would pass from
the Sun if its trajectory was a straight line). Obviously, in an actual
system the distance of the closest approach will be smaller than b due
to gravitational focusing. Write down the equation for bmin(v, b).
Try running the simulation with various parameters v, b and see what
remains from the planetary system. Which planets remain bound to
Sun? how does it depend on the parameters of the encounter? Give a
physical explanation to your findings.

4 Studying the galaxy mergers

1. We now go on to study a system with a somewhat larger number of
bodies, but still not as large as in a real galaxy. In fact the problem

to study is that of a collisionless dynamics, and as such, the number
of particles in the simulation should not be important for the global
dynamics of the system, provided that it is sufficiently large (i.e. the
convergence of results with increasing N is reached).
Namely, we are studying the accretion of a satellite galaxy or a glob-
ular cluster onto the primary galaxy, which results from the effect of
dynamical friction (see wikipedia). We put this satellite on an orbit
around the primary galaxy and watch how does this orbit decay, i.e.
the satellite eventually merges with the primary. The main properties
of dynamical friction is that the drag force is proportional to the mass
of the moving object (i.e. the satellite) and the density of medium
through which it is moving.

2. Let’s start with a simple case of a “rigid” satellite, represented by just
one indivisible particle, placed on a circular orbit around a spherical
primary galaxy. First we need to create the snapshot with initial condi-
tions for this simulation. The primary galaxy will be represented by a
Plummer sphere with scale radius of 1 and total mass of 1, sampled by
N = 1000 equal-mass particles. (103 is a good starting point, later we
are going to study the dependence of the evolution on N). We create
it by
> mkplum primary.nemo nbody=1000

or another program for the same purpose
> mkplummer primary.nemo nbody=1000 scale=1

The satellite will be just a point massmsat initially located at a distance
r = 4 from the center (on x axis), with the velocity in the y direction
that puts it on a circular orbit at this radius. Compute the necessary
velocity vcirc from the known mass profile of the primary galaxy and
the associated centrifugal acceleration at this radius. We create this
“micro-snapshot” by
> echo 4,0,0,0,vcirc,0,msat | tabtos - satellite.nemo nbody=1

block1=x,y,z,vx,vy,vz,m

where you substitute the computed velocity for vcirc and the satellite
mass for msat (let’s start with msat = 0.1).

3. The next step is to put together the two components to create the
initial conditions. This is done by
> snapstack satellite.nemo primary.nemo - zerocm=t |

snapshift - initcond.nemo vshift=0,-vcm,0

Here the first command takes two snapshots and merges them into the
third one, which is given by dash indicating that it’s not written to a
file, but passed as the input to the second command, which shifts the
snapshot in velocity and writes it to the file initcond.nemo. This is
necessary since we don’t want our system to drift away from the origin
because of a non-zero net momentum: the primary system has a zero
total momentum, but the satellite does not. So you need to compute

the center-of-mass velocity vcm (which will be in the y direction) and
compensate for it by adding a negative velocity to all particles. (The
coordinates of the center-of-mass are shifted to origin by the parameter
zerocm=t of snapstack).
Actually even this would not achieve the goal, as our primary galaxy
did not have exactly zero total momentum because of shot noise (the
number of particles is rather small, and N−1/2 fluctuations are non-
negligible). Find the center-of-mass velocity of the stacked snapshot
by running
> snapkinem initcond.nemo weight=m

and then compensate for it.

4. Now we are ready to start a simulation. We will use the fast tree-code
N -body integrator gyrfalcON for that purpose. It has a multitude of
parameters, of which four are necessary: the input/output file names,
the gravitational softening length ϵ and the timestep τ . Let’s discuss
the choice of the latter two.
Softening is necessary in collisionless simulations to prevent close en-
counters that would deflect individual particles too much from their
trajectories in the smooth potential. For this purpose, we replace the
Newton’s gravitation law with the softened one in which the force be-
tween two bodies tends to zero at small separation (smaller than ϵ),
instead of diverging as r−2. There are various functional forms of soft-
ening, most commonly used (but not the optimal, and not the one used
in gyrfalcON by default) is the Plummer softening in which the force
is given by r/(r2 + ϵ2)3/2. In effect, we may think of our system being
composed not of point-mass particles, but of finite-size objects with
radius ∼ ϵ.
The amount of softening which is appropriate for a given simulation is
quite often taken from some hand-waving arguments, such as the ne-
cessity of resolving some given spatial scale which should be larger than
ϵ, or from the considerations of computer time limitations. However,
there is always a formally optimal softening length for a given sys-
tem, which minimizes the sum of random fluctuations of gravitational
force from the discreteness of mass distrubution (i.e. the variance er-
ror), and the systematical error from altering the gravitational law.
Roughly speaking, this optimum is achieved when the softening length
is comparable to the mean inter-particle separation. We will use a sin-
gle softening length for all particles, even though the mean separation is
smaller in high-density regions. Thus our choice will be a compromise
based on some average value for the entire system, which is just n−1/3,
with n ∼ N/a3 being the average number density of particles in the
volume of characteristic size a (which is unity for our Plummer sphere;
actually, a better-informed estimate would take into account that the
central density of the Plummer profile is 3

4π
). Thus, for our 1000-body

system we take ϵ = 0.1.
After determining the softening length, we may compute the time step
which should be a small fraction of the time in which forces acting
on a single particle may change substantially. To put it differently,
if a particle is moving at the speed v, then after passing a distance
& ϵ the force from the surrounding configuration of neighbour particles
may change significantly. Thus the timestep shoud satisfy τ ≤ ηϵ/vtyp,
where the typical velocity is limited by the escape velocity from the
center of potential well (vesc =

√
−2Φ(0), with the potential at origin

Φ(0) = −1 for our Plummer sphere). The accuracy parameter η should
be no larger than 0.5, or better perhaps . 0.25; a value too large may
manifest itself in the substantial non-conservation of total energy, but
unfortunately the conservation of energy conservation is only the neces-
sary, not sufficient condition for the simulation to be valid. In collision-
less simulation, a relative error in energy conservation of 10−4..10−3 is
usually tolerable. Getting back to our run, in gyrfalcON the timestep
is specified by a parameter kmax such that τ = 2−kmax. Compute the
appropriate value of kmax for our simulation.
Now we are ready to start the simulation:
> gyrfalcON initcond.nemo run1.nemo eps=0.1 kmax=your-value-
here step=0.25 tstop=100 logstep=16

Other parameters that we specified are step – the time interval for out-
put (not the integration timestep), tstop – the end time of simulation,
and logstep – the number of timesteps between printing the diagnos-
tic information to the console (otherwise it will print it each timestep,
which is too frequently). This diagnostic information includes the total
energy (in the second column), which is useful to test its conservation
error, and the virial ratio in the 6th column. This run should take only
a few dozen seconds, after which you may enjoy watching the movie of
the simulation in glnemo:
> glnemo2 run1.nemo select=all com=f texture=f point=t

You will probably not discern your satellite particle among the other
ones, unless you switch on the display of its orbit on the “orbits” tab
of the instrument palette.

5. Now we need a more quantitative way of analyzing the results of our
run than just watching a movie. For this simple run, we may just print
the coordinates of the first particle and analyze its time dependence:
> snapmask run1.nemo - select=0 | snapprint - options=t,r,x,y,z

tab=run1sat.txt

Now plotting the first two columns of this text file gives you the time
evolution of the distance of the satellite to the center. You will notice
that it decays first slowly, then accelerates until it drops to a small ra-
dius where the random oscillations about the origin keep going forever.

6. Repeat the simulation with a different mass of the satellite msat (say,

10 times smaller) and observe whether it takes correspondingly longer
for the orbit to decay. Repeat the run with a different number of
particles in the primary galaxy; does the result depend sensitively on
this number?
Run another simulation in which the satellite was not on a circular
orbit, but on an eccentric one (start not from the same radius, but
from an orbit with the same semimajor axis as the circular orbit).
How does the sinking time depend on the eccentricity? Can you give a
quantitative explanation for your findings?

7. Now let’s take the next challenge and consider a satellite that itself is
a composite system of N2 particles. Create this satellite snapshot by
> mkplum satellite2.nemo nbody=N2 mass=msat r_s=rsat
where rsat is its scale radius. Let’s now use msat = 0.1, N = 104 par-
ticles for the primary and N2 = 103 for the satellite (don’t forget to
adjust ϵ and τ accordingly), and vary the scale radius of the satellite rs,
which changes its concentration. Start with rs = 0.25; since the mass
of the satellite is 10x smaller and its volume is 0.253 of the primary,
its density is substantially larger than that of the primary galaxy. Run
the simulation for 100 time units and then watch the output by
> glnemo2 run2.nemo select=0:999,1000:10999 com=f point=t texture=f

This will display the particles of the primary and the satellite in differ-
ent colors. Watch how the orbit of the satellite decays and whether it
looses mass substantially by tidal stripping. (In the instrument panel
of glnemo, you may switch off the display of the primary galaxy and
see how the satellite orbits an empty space:).
Now repeat the same run, but now setting the satellite’s scale radius
to 0.5, which makes it somewhat less dense than the primary. How do
the results change? Can you define the moment when the satellite has
reached the center of the primary in this run, or it did not survive until
that time and was disrupted entirely?
For a quantitative analysis of the satellite trajectory in this section we
need some more sophisticated methods, because some of its particles
are stripped off on the way, and we do not know in advance which
ones will reside close to the center of the satellite (and even how to
define this center). A practical method of finding the center may rely
on locating the particle that traces the minimum of the gravitational
potential, if we compute it using only the particles belonging to the
satellite. To that end, we employ a rather sophisticated sequence of
commands:
> snapmask run2.nemo - select=0:999 | addgravity - - eps=0.05

| snapsort - - rank=phi | snapmask - - select=0 | snapprint

- options=t,r,x,y,z,phi,key tab=run2sat.txt

The first command filters out only the satellite particles (the first 1000),
the second one computes the self-gravity of this subset of particles (we

need to provide the value of softening length), the third sorts them in
order of increase of the gravitational potential; then we select the first
particle of this sorted list and print its coordinates to the text file. The
last two columns of this text file give the potential and the index of the
particle (you will see that this is almost never the same particle). Plot
the trajectory of this central particle in x− y plane (columns 3 and 4)
to see that indeed it seems to trace the center, at least for the first of
our runs. What about the second one when the satellite got disrupted?
Can you now define the moment of disruption? Plot the evolution of
central potential versus time; can you roughly estimate how much mass
does the satellite retain by the given time?
Compare the runs with a point-mass and a composite satellite, in par-
ticular, the decay times. Give a qualitative explanation to your find-
ings.

