
Stability of combustion waves in the Zeldovich-Liñán
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Abstract

In this paper we investigate the stability of the premixed combustion waves
in the Zeldovich-Liñán model in the adiabatic limit in two spatial dimen-
sions. It is shown that either wave or cellular instabilities emerge for the
Lewis number for fuel greater or smaller than one respectively. On the Lewis
number for fuel vs activation energy parameter plane, the critical parameter
curve for wave (cellular) instability is a monotonically decaying (increasing)
function, which tends to one for large values of activation energies and grows
infinitely (vanishes) as the activation energy is decreased to some critical
value (zero). Decreasing the recombination parameter, which corresponds to
the relation between the characteristic times of the branching and recom-
bination reactions, makes the combustion waves more stable by increasing
the region of parameter values for stable travelling wave solutions. Increasing
the ambient temperature is demonstrated to have similar stabilizing effect on
combustion waves. The effect of the varying the Lewis number for radicals
is shown to be more complex and depends on the regime of recombination.
It is demonstrated that as the critical parameter values for the onset of in-
stability are crossed, either pulsating or cellular two-dimensional solutions
emerge. The properties of these solutions are studied. A comparison of the
results of this paper with known data from the literature for deflagration of
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hydrogen-oxygen mixtures is made.
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1. Introduction

The Zeldovich-Liñán model was introduced by Zeldovich in 1948 [1]. It
was the first two-step chain branching reaction model of premixed flame
propagation, which included not only the initial species and products, but
also intermediate species, i.e. radicals. Such reaction kinetic schemes are
of special interest since hydrocarbon-air and hydrogen-air flames normally
produce a pool of radicals through the branching reaction steps. The radi-
cals later recombine to produce heat and products. These flames are usually
modelled with chain-branching reaction kinetics. The model was analyzed
by Liñán [2] using the activation energy asymptotics (AEA). Therefore this
model is usually referred to as the Zeldovich-Liñán model. It comprises a
chain branching reaction A + B → 2B, and a chain-breaking (or recom-
bination) reaction B + B +M → 2P +M , where A is the fuel, B is the
intermediate radical, P is the product, and M is a third body of collision
needed for recombination, which is not changed by the reaction. It is assumed
that the first reaction has a large activation energy and negligible heat of the
reaction whereas, the recombination reaction has zero activation energy and
is exothermic. The condition of zero heat release of the first reaction was
subsequently relaxed in [3].

In [2] it was shown that there are three flame regimes in the Zeldovich-
Liñán model: fast, slow and intermediate recombination. In the fast recombi-
nation regime the production of radicals by the branching step is much slower
than the consumption of radicals through the recombination step. This has
the following consequences: chain-branching and chain-recombination take
place in the same thin reaction zone, the concentration of radicals is asymp-
totically small, and therefore the steady state approximation can be applied
to it. In the slow recombination regime, the concentration of radicals is of
the order of unity and all radicals are produced in a thin reaction zone. The
consumption of radicals proceeds in a long scale region greater or comparable
to the convection-diffusion region. In the intermediate recombination regime,
the rates of the branching and termination reactions are comparable. The
concentration of radicals is of the order of the dimensionless burned temper-
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ature. The branching reaction takes place in a thin zone, which is followed
by a much thicker recombination region. Both reaction zones are embedded
in even larger convection-diffusion zones.

Using the above arguments, various asymptotic expansions have been
introduced in different flame zones. The resulting asymptotic differential
equations are then solved either symbolically or numerically depending on
the complexity of the system of equations appearing as a result of asymptotic
analysis. The model considered in [2, 3] does not include heat loss and
the response curves obtained in these papers are single-valued functions.
In [4] the Zeldovich-Liñán model with heat loss to the surroundings was
considered by using AEA. It was demonstrated that the flame speed as a
function of other parameters of the problem is a C-shaped function which
exhibits turning point-type extinction condition similar to that predicted by
the one-step nonadiabatic model [5].

In a number of investigations [6, 7, 8, 9], the influence of stretch on
premixed flame for the Zeldovich-Liñán model was studied. The authors
considered several distinguished limits in order to examine the problem in
terms of AEA either analytically or semi-analytically. As a result it was
found that the flame response to stretching depended upon the particular
flame regime i.e. slow, fast or intermediate recombination.

In [10] Zeldovich introduced a slightly modified model with the kinetic
scheme: A+B → 3B and B+B+M → 2P +M , to describe the hydrogen-
oxygen flame. Here A is the concentration of the deficient component and B
is the concentration of the H atoms which are considered as the only radical
involved in the reaction. Approximate formulas for the deflagration speeds
were obtained in the limits of strong and weak recombination. Recently
[11, 12] these results were tested using numerical calculations with detailed
mechanism of the reaction and it was demonstrated that the two-step reac-
tion model gives a good approximation of the flame propagation velocity. As
discussed in [11, 12] the rate of the global recombination reaction is governed
by two elementary steps: one being linear while the other is quadratic with
respect to the radical concentration. In [10], Zeldovich considered the square-
law route of radical recombination. This reaction path can be important for
the case of hydrogen-rich mixtures. The applicability of the Zeldovich-Liñán
model for the description of the hydrogen-rich flames is further described
below. The linear elementary reaction step, where the H-radicals recombine
with the oxygen molecules, has a higher reaction rate and must be faster in
conditions with excess O2. This reaction path should be dominating in the
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case of lean mixtures. The chain-branching models with first-order recombi-
nation reactions have become very popular in the last decade. Partly, this is
due to the fact that despite the apparent success in the investigation of the
speed of the combustion waves, the stability of flames in the Zeldovich-Liñán
model has not been systematically investigated, whereas for the models with
first-order reaction, like the model introduced in [13], both the properties
and stability of the travelling combustion waves can be studied using AEA.

A simplified version of the Zeldovich-Liñán model with first-order recom-
bination reaction was introduced in [13] and studied analytically by AEA.
The speed of the combustion wave was determined as a function of the pa-
rameters of the problem and was shown to be C-shaped in the nonadiabatic
case. For the adiabatic case, the expression derived in [13] suggests a unique
flame speed. The stability analysis was also carried out and two types of
instability are expected to occur depending on the parameter values. For
the case of the reactant Lewis number less than one, the analysis in [13]
predicted that the wave could lose stability due to the emergence of cellular
instabilities. The oscillatory instability is found for Lewis number greater
than one. Recently a similar model [14] was studied in the adiabatic limit
for the case of finite activation energies and the onset of cellular instabilities
for Lewis number for fuel smaller than one was confirmed.

In [15, 16] we investigated the properties of the model introduced in [13]
in the one-dimensional adiabatic case and in the limit of equal diffusivities
of the reactant, the radical and heat. In [17, 18] the latter assumption was
dropped. We demonstrated that when the Lewis number for fuel is less than
unity the flame speed is unique and is a monotonically decreasing function
of the dimensionless activation energy. As the flame speed decreases to zero,
the combustion wave is stable with respect to one-dimensional perturbations
and exhibits extinction for finite values of activation energy. For fuel Lewis
number greater than unity the flame speed is a double-valued function. The
slow solution branch is shown to be unstable whereas the fast solution branch
is either stable or exhibits the onset of pulsating instabilities via the Hopf
bifurcation. In [19] the analysis is generalized to the nonadiabatic case in
two-spatial dimensions. It is demonstrated that the flame speed as a func-
tion of parameters is a double-valued C-shaped function regardless of the
values of Lewis numbers. The slow solution branch is always unstable to
uniform perturbations. For Lewis number for fuel greater than one, the fast
solution branch is either stable or loses stability due to the wave or uniform
perturbations. In [19, 20] complex regimes of flame propagation such as pul-
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sating, chaotic, and standing waves are studied. These solutions are shown
to emerge as a result of the loss of stability of the combustion wave with
respect to oscillatory instability. In [21] the spherical geometry is studied
and flame initiation and propagation is investigated. In [22] the model was
extended to take into account the hydrodynamic effect induced by thermal
expansion. The governing reaction-diffusion equations constituting the core
of the model in [13] were coupled to the quasi-isobaric Navier-Stokes equa-
tions of the gas dynamics. It was shown by means of AEA that the flame
always has a band of perturbations with small wavelength which are unstable
due to the hydrodynamic mode.

However the kinetics can change the properties of combustion waves sig-
nificantly and the results obtained for the model introduced in [13] cannot
be directly applied to the Zeldovich-Liñán model. For example, in [23] it
was found that the flame speed is a unique and monotonically decreasing
function of the activation energy and the combustion wave does not exhibit
extinction as the activation energy is increased. The results were compared
to known predictions of the AEA and were found to agree. This is in contrast
to the properties of the combustion waves in the adiabatic model introduced
in [13]. In [23] the first attempt to tackle the stability of combustion waves
in the Zeldovich-Liñán model in the one-dimensional case was undertaken.
It was demonstrated that combustion waves lose stability due to the pres-
ence of supercritical Hopf bifurcations. The neutral stability boundary was
found in the space of parameters. It was demonstrated that critical Lewis
number for fuel is a monotonically decreasing function of the activation en-
ergy, which tends to one as the activation energy is asymptotically increased,
and to infinity as the activation energy is decreased to certain finite criti-
cal value. The situation resembles the properties of the one-step adiabatic
model, rather than the two-step chain branching model with the first-order
recombination [13], where the bifurcation of co-dimension two was observed
[20, 19].

The aim of the work presented in the current paper is to extend the results
of the previous investigation [23] of the stability of the combustion waves in
the Zeldovich-Liñán model from one to two spatial dimensions. In contrast to
[23] both regions of Lewis numbers for fuel greater and less than one are con-
sidered. This allows the study of the emergence of cellular instabilities. The
other goal of the current investigation is to determine the regimes of flame
propagation which emerge as the travelling combustion wave becomes unsta-
ble. The paper is organized as follows. In section 2 the governing equations
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and boundary conditions for the model are introduced in both dimensional
and dimensionless forms. The properties of the travelling combustion waves
are discussed. The linear stability analysis of these solutions is carried out in
section 3. In section 4 the pulsating and cellular solutions that emerge as the
neutral stability boundary is crossed in the space of parameters are investi-
gated. In section 5 the parameters of the model are fitted to the deflagration
of hydrogen-oxygen-argon mixtures. Conclusions are presented in section 6.

2. Model equations and travelling waves

We consider a diffusional thermal adiabatic model in two spatial dimen-
sions that includes two steps: autocatalytic chain branching A + B → 2B
and recombination B + B +M → 2P +M . Following the approach of [1],
it is assumed that all the heat of the reaction is released during the recom-
bination stage and the chain branching stage does not produce or consume
any heat. According to [4], the dimensional equations governing this process
can be written as

ρcp
∂T

∂t
= λ∆T + qFWAAR

(

ρYB
WB

)2
ρYM
WM

,

ρ
∂YA
∂t

= ρDA∆YA −WAAB

(

ρYA
WA

)(

ρYB
WB

)

e−E/RT ,

ρ
∂YB
∂t

= ρDB∆YB +
ρYB
WB

(

AB
ρYA
WA

e−E/RT − 2AR
ρYB
WB

ρYM
WM

)

WB,

(1)

where ∆ = ∂2/∂x2 + ∂2/∂y2 ; T is the temperature; YA and YB represent
the mass fraction of fuel and radicals respectively; ρ is the density; λ is
the thermal conductivity; cp is the specific heat; DA and DB represent the
diffusivities of the fuel and radicals respectively, AR and AB are constants
of recombination and chain branching reactions respectively; WA, WB, and
WM represent the molecular weights of fuel, radicals and a third body; qF
is the specific heat of the recombination reaction; E is the activation energy
for the chain branching reaction; R is the universal gas constant. Eqs. (1)
are considered subject to boundary conditions

T = Ta, YA = Y ∞

A , YB = 0 for x→ +∞,

dT/dx = 0, dYA/dx = 0, YB = 0 for x→ −∞,
(2)
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which correspond to a wave travelling in the positive x-axis direction. A
more detailed discussion of the boundary conditions is given below, while de-
scribing the numerical integration scheme. Upstream, on the right boundary,
T is equal to the ambient temperature, Ta; fuel has not been consumed yet
and YA is equal to its maximal initial value in the cold unreacted mixture,
Y ∞

A ; no radicals have been produced i.e. YB = 0. Downstream, on the left
boundary, we require that there is no reaction happening, so the solution
reaches a stationary point of Eq. (1). Therefore the zero flux conditions for
T , YA, and zero condition for YB are imposed.

Introducing the nondimensional time, t′ = (ρAB/e
ββM∗)t, coordinate

r′ = (ρ2ABcp/λM
∗βeβ)1/2r, variables

u =
T

T ∗β
, v =

YA
Y ∞

A

, w =
YBWA

Y ∞

A WB
, (3)

and dimensionless parameters

β =
2Ecp
RqFY

∞

A

, LA,B =
λ

DA,Bρcp
, r =

2ARYMρe
β

ABWM
, (4)

where M∗ =WA/Y
∞

A and T ∗ = qFY
∞

A /2cp is the reference mass and temper-
ature respectively, β is the dimensionless activation energy, LA and LB are
the Lewis numbers for fuel and radicals respectively, we write Eqs. (1) and
(2) omitting primes as

ut = ∆u+ rw2,

vt = L−1
A ∆v − βvw exp (β − 1/u) ,

wt = L−1
B ∆w + βvw exp (β − 1/u)− rβw2,

(5)

and
u = ua, v = 1, w = 0 for x→ +∞,

du/dx = 0, dv/dx = 0, w = 0 for x→ −∞.
(6)

It should be noted that time and space non-dimensionalization in Eq. (4) is
different from the one used in [23]. This results in the multiplier eβ in the
branching reaction rate in Eq. (5) and a different definition of the recombi-
nation parameter, r, which corresponds to parameter R in [23].
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The properties of the travelling combustion waves are numerically studied
in detail in [23]. Here we briefly outline the main results. The solution
to the problem (5)-(6) is sought in the form of a travelling wave u(r, t) =
u(ξ), v(r, t) = v(ξ), and w(r, t) = w(ξ), where a coordinate in the moving
frame, ξ = x − ct, is introduced and c is the speed of the travelling wave.
It is found that the flame speed is unique, the combustion wave does not
exhibit extinction as the activation energy is increased in contrast to the
model with the first order recombination reaction [16]. The flame speed is
a monotonically decreasing function of the activation energy. The structure
of the travelling combustion wave is found to depend on the recombination
parameter, r, which has a physical meaning of the ratio of the characteristic
times of the branching and recombination reactions. For small values of
r, the slow recombination regime of flame propagation is observed. In this
case the leading edge of the flame is governed by heat and species diffusion,
the reaction zone consists of a thin branching zone embedded in a much
wider recombination region. In the branching zone almost all the fuel is
converted to radicals and the radical concentration reaches values of the
order of O(1). In the recombination region the radicals are transformed into
products and heat is released. The recombination reaction spreads to the
product zone, where the recombination, rather than the transport effects are
dominating. As a result the temperature and species concentrations approach
the asymptotic values in sub-exponential manner. This distinguishes the
Zeldovich-Liñán model from both the one-step and other two-step reaction
models. In the case of large r, the recombination reaction is faster than the
branching reaction and the fast recombination regime of flame propagation is
observed. In the upstream region the transport effects are dominating. This
preheat zone is followed by the reaction region, where the recombination
reaction follows the branching reaction and a steady-state approximation
applies to the radical species. As a result, the radical concentration is small.
The two-step reaction model can be reduced to the one-step reaction model
with second-order reaction and by doubling the activation energy of that for
the branching reaction in the two-step model. The reduced model allows the
AEA analysis which results in the following asymptotic formula for the flame
speed (see [23] and references therein)

c =
LA

β
√
2r
, (7)

which differs from the corresponding expression in [23] due to the different
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nondimensionalization used here. It is clear from Eq. (7) that such a choice
of nondimensional parameters eliminates the exponential dependence of the
flame speed on β and is more convenient for numerical investigation of the
properties of the travelling combustion waves for large values of activation
energies. The properties of the travelling wave solution described above are
illustrated in Fig. 1, where the dependencies of the flame speed (panel a)
and the maximum value of the radical concentration, wmax, (panel b) are
plotted versus β for LA = LB = 1 and different values of the recombination
parameter r = 0.02 and r = 50.0. In Fig. 1 (a) the solid lines represent
the numerical results and the dotted lines correspond to the predictions of
the asymptotic formula (7). It is seen that the correspondence is good for
the fast recombination regime and large activation energies. In the slow
recombination regime the discrepancy between the one-step and two-step
models is substantial reaching two orders of magnitude. In Fig. 1 (b) the
dependence of wmax(β) is shown. It is seen that for r = 0.02 the maximal
value of radical concentration becomes comparable to the fuel concentration
for moderate values of β and decrease as β becomes larger. On the other
hand for r = 50 the radical concentration is almost three orders of magnitude
smaller which qualitatively agree with the prediction of the AEA for fast
recombination regime.

The dependence of the combustion wave speed on other parameters has
been studied in [23]. In particular, the variation of LA affects the combustion
wave substantially, so that the combustion wave travels faster for larger values
of LA. In contrast, the variation of LB has almost no effect on the flame speed.
The next section is devoted to a stability analysis of the combustion waves.

3. Linear stability

In order to investigate the stability of the combustion waves with re-
spect to the pulsating perturbations we linearize the governing Eqs. (5)
near the travelling wave solution. We seek solution of the form u(r, t) =
U(ξ)+ǫφ(ξ) exp(λt+ iky), v(r, t) = V (ξ)+ǫψ(ξ) exp(λt+ iky), and w(r, t) =
W (ξ)+ǫχ(ξ) exp(λt+iky), where [U(ξ), V (ξ),W (ξ)] represent the travelling
combustion wave. Here terms proportional to the small parameter ǫ are the
linear perturbation terms, λ is a spectral parameter governing the time evo-
lution of the perturbation and k is the wave number which is transverse to
the wave propagation direction. The main difference of our current approach
from the earlier investigation [23] is that two-dimensional perturbations are
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allowed here. Substituting this expansion into Eq. (5), leaving terms propor-
tional to the first order of ǫ only, and introducing the vector function with
components v(ξ) = [φ, ψ, χ, φξ, ψξ, χξ]

T we obtain

vξ = Â(ξ, λ, k)v, (8)

where

Â =

[

0 Î

Ĥ + k2Î + λQ̂ −cQ̂

]

, Q̂ =





1 0 0
0 LA 0
0 0 LB



 , (9)

Ĥ =



















0 0 −2rW

βLAVW

U2e1/U
βLAW

e1/U
βLAV

e1/U

−βLBVW

U2e1/U
−βLBW

e1/U
LB

(

−βV
e1/U

+ 2βrW

)



















, (10)

Here Î is 3 × 3 identity matrix, U(ξ), V (ξ), W (ξ) are functions of the ξ-
coordinate and represent the travelling combustion wave. We will call a set,
Σ, of all λ values for which there exists a solution to Eq. (8) bounded for
both ξ → ±∞ a spectrum of linear perturbations. In the general case, Σ is
a set on the complex plane and it consists of the essential and the discrete
spectrum. If there exists at least one λ ∈ Σ such that Reλ > 0, then the
travelling wave solution is linearly unstable, otherwise, if for all λ ∈ Σ the
real parts are not positive, then the travelling wave solution is linearly stable.
Therefore in order to investigate the linear stability of the travelling wave
solutions to Eq. (5), the spectrum Σ of the problem (8) has to be found for
all k values. It can be shown (see [24] for details) that the essential spectrum
consists of parabolic curves in the complex plane with Reλ ≤ 0. This implies
that it is the discrete spectrum of the problem (8) that is responsible for the
emergence of instabilities.

The linear stability problem is solved by finding the location of the dis-
crete spectrum on the complex plane using the Evans function method [24]
implemented with the use of a compound matrix approach (see [18] for more
details). From the mathematical point of view, (8) is an eigenvalue problem
for a system of Ordinary Differential Equations with asymptotically constant
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coefficients exhibiting the so-called exponential dichotomies: for each λ out-
side the essential spectrum, the solution space of (8) can be presented as a
direct sum of the subspaces of the solutions bounded, E+

s , and unbounded,
E+

u , as ξ → ∞. The same is true in the opposite limit ξ → −∞ and
Cn = E−

s

⊕

E−

u . Then, λ is an eigenvalue (or a point of the discrete spec-
trum) if the subspace of solutions, E−

s (bounded for ξ → −∞) intersects
nontrivially with the subspace of solutions, E+

s (bounded for ξ → ∞). In
our case, for all λ located in the complex plane to the right from the essential
spectrum, both subspaces are three dimensional and therefore can be rep-
resented by 3-vectors, V±, respectively. The Evans function is then defined
as E(λ) ∼ V+ ∧ V−, where V± are evaluated at a certain value of ξ. The
3-vectors, V±(ξ) are evaluated numerically via the compound matrix method
(see [18] and references therein). According to [24] the problem of locating
points of the discrete spectrum is equivalent to the problem of finding zeros
of the Evans function, E(λ), on the complex plane. In contrast to the one-
dimensional stability analysis, where the discrete spectrum is a set of points
for fixed parameter values, the present analysis in two dimensions results in
the solutions to Eq. (8) having λ(k) dependencies (the dispersion relations).
In general, λ(k) is a complex function of real variable. Analogous to [19],
depending on the behaviour of λ(k) instabilities of two types are expected to
occur: wave or cellular instabilities.

The results of the linear stability analysis are presented in Fig. 2. For
the case of fuel Lewis number greater than one, the combustion wave loses
stability with respect to perturbations of the wave type. In this case, as the
neutral stability boundary is crossed in the parameter space the maximum
value of the Reλ(k) dependence, which is reached at certain k = kmax > 0,
becomes positive and corresponding value of Imλ(kmax) 6= 0. This situation
is illustrated in the inset of Fig. 2 (in the top-right corner), where Reλ(k) and
Imλ(k) are schematically shown. The marginal values for the wave instability
are plotted with solid line for various values of r ranging from 0.02 to 50 and
LB = 1, ua = 0. The impact of the latter parameters is described below. In
each case stable combustion waves exist for the parameter region below the
solid curves. The critical parameter values for the Hopf bifurcation, which is
encountered in the one-dimensional formulation and studied in [23], are also
given in the figure for the same parameter values and are shown with the dot-
ted lines. It is seen that the wave instabilities of the multidimensional nature
dominate the one-dimensional pulsating instabilities and are encountered in
the parameter space before the critical values for the Hopf bifurcation has
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been reached. The neutral stability boundary LA(β) is a monotonically de-
caying function of hyperbolic type: for large values of activation energy the
critical value of LA tends to 1; on the other hand as β approaches the critical
value, βtr, the Lewis number for fuel exhibits unbounded growth. The loca-
tion of the neutral stability boundary is qualitatively similar to the case of
the one-step adiabatic model. For the slow recombination regime, r < 1, the
variation of the recombination parameter substantially affects the stability
of combustion waves: as r is decreased the neutral stability boundary shifts
to larger values of the activation energy. For the case of fast recombination,
r > 1, the neutral stability boundary tends to limiting curve. For instance,
the increase of r from 10 to 50 results in only a slight modification of the
critical parameters LA(β) from curve 4 to 5 in Fig. 2.

The properties of the wave instability such as the spatial structure in the
transverse direction and time frequency of oscillations are determined by the
parameters kmax and ωmax = Imλ(kmax) of the dominating instability i.e. the
mode of the linear stability problem (8) for which maximum of Re(λ) > 0 is
reached at k = kmax. These parameters are important since they characterize
the properties of the complex solutions emerging as a result of the primary
bifurcation as the travelling combustion wave loses stability. In Fig. 3 the
dependence of the wave number (a) and frequency of oscillations (b) on the
activation energy are plotted for the dominating instability. Parameters kmax

and ωmax are sampled for each value of β at the neutral stability boundary
i.e. LA is adjusted in each case so that LA and β correspond to the marginal
values for the onset of wave instability. Other parameter values are fixed as
indicated in the figure caption. Both kmax(β) and ωmax(β) are monotonically
decaying functions. As the recombination parameter is decreased, higher
values of the wave number and frequency of the dominating instability are
observed. Since the marginal dominating instability mode can be a precursor
of the bifurcating solution in the soft excitation regime, we can expect the
structures with larger transverse scales and slower temporal dynamics to
emerge as the recombination parameter is increased.

For the case of LA < 1, the analysis shows that the combustion wave
loses stability with respect to cellular perturbations. This type of instability
does not have a one-dimensional analogue and is exhibited in systems with
at least two-dimensional geometry. The characteristic dispersion relation
for cellular instability is schematically shown in the inset to Fig. 4 in the
right-bottom corner. The real part of λ(k) is only presented on the graph
since the imaginary part is equal to zero. For stable travelling waves, the
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dependence of Reλ(k) is a monotonically decreasing function anchored at
the origin, λ(0) = 0. As the neutral stability boundary is approached, the
inclination of the Reλ(k) graph at k = 0 tends to zero and diminishes as
the critical parameters are reached. Crossing the neutral stability boundary
from the stable to unstable region of parameters results in the change of
the sign of the inclination (or derivative) of Reλ(k) at k = 0 from negative
to positive. As a consequence there appears an extremum in the Reλ(k)
function at a certain value of k = k∗ as illustrated in the inset to Fig. 4. It
should be noted that the dispersion relation is always anchored at the origin
in this case i.e. λ(0) = 0. In Fig. 4 the critical parameter values for the
onset of cellular instabilities are plotted on the LA versus β plane for LB = 1,
ua = 0 and several values of r ranging from 0.02 to 50. The corresponding
regions of stable combustion waves are located above the marginal curves for
cellular instability. The neutral stability boundary, LA(β), is a monotonically
increasing function. The behaviour of the critical parameter curve LA(β)
looks qualitatively similar to the case of the one-step adiabatic model: as β
tends to zero, LA diminishes and as β becomes large, LA tends to one. The
region of stable combustion waves shrinks and the marginal curve elevates
as the recombination parameter is increased from 0.02 to 1. For r > 1 a
tendency to certain limiting behaviour is observed: changing r from 10 to 50
only slightly affects the critical parameters, so that the corresponding neutral
stability curves lie almost on top of each other.

It should be noted that the stability results governing the onset of pul-
sating and cellular instabilities described above are consistent with those
obtained for a single-step adiabatic models. In [25, 26, 27, 28] the AEA anal-
ysis of the flame stability in diffusional-thermal approximation was carried
out. These predictions were later verified numerically [29]. The neutral sta-
bility boundaries for the onset of cellular and pulsating flames qualitatively
agree with those shown in Figs. 2 and 4.

The influence of varying LB on the stability of combustion waves is also
investigated for both slow and fast recombination regimes ( for brevity, the
results are not shown here). The increase of LB has a rather complex effect
upon the critical parameters for wave instability (LA > 1) in the case of
slow recombination. For intermediate values of the activation energies the
critical parameter values shift towards larger values of β with the increase of
LB i.e. for heavier radicals the flame is less stable. On the other hand for
large β the opposite tendency is observed: increasing LB moves the neutral
stability back towards smaller β. For the case of cellular instability (LA < 1)
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the situation is less ambiguous: decreasing LB makes the combustion wave
more stable. The same result, although less pronounced, is observed for
the case of fast recombination. As noticed earlier, when r becomes large
the stability characteristics seem to tend to some limiting behaviour. As a
result the increase of LB only slightly decreases the region of stability of the
combustion waves for both LA < 1 and LA > 1.

The ambient temperature, ua, is an important experimental parameter.
In the studies above it was fixed to zero. Next we investigate the impact
of this parameter on the stability of the travelling wave solutions. In Fig.
5 the neutral stability boundary is plotted on the LA versus β plane for
r = 0.1, LB = 1, and two values of the ambient temperature ua = 0 and
ua = 0.01. The case of wave instabilities, LA > 1, is presented in panel (a).
Here the solid line corresponds to the neutral stability boundary and the
dotted line represents the Hopf bifurcation for the one-dimensional case. It
is seen that the increase of the ambient temperature shifts the stability curve
to the region of larger β values, thus making the combustion waves more
stable. The onset of cellular instabilities is demonstrated in panel (b) of Fig.
5. It follows from graphs for ua = 0 and 0.01 that raising the temperature of
the surroundings has stabilizing influence on the flame. This effect is more
evident for larger values of the activation energy and becomes less apparent
for intermediate and small values of β. Fig. 6 is similar to Fig. 5 with the
only difference being that a fast recombination is considered i.e. r = 10. In
panel (a) the case of LA > 1 is presented. It is seen that in contrast to varying
LB, changing ua still has a significant effect on the stability boundaries. The
same situation is observed in panel (b), where the cellular instability curves
are presented for ua = 0 and 0.01. Increasing the ambient temperature has
a stabilizing effect by shifting the neutral stability boundary to lower values
of LA.

4. Standing and cellular waves

We investigate the properties of the emerging combustion wave solutions
when the parameters cross the neutral stability boundary for the travelling
wave solutions. The governing Eqs. (5) are solved in a sufficiently large
rectangular coordinate region with the boundary conditions (6) imposed at
the edges of the space grid along the y-axis and zero flux conditions for u,
v, and w for the edges along the x-axis. The length of the region along the
x-direction is chosen to be sufficiently large so that the boundary conditions
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(6) are satisfied with reasonable accuracy. The length of the region in the y-
direction is chosen to accommodate one period of the transverse perturbation
structure. For our numerical algorithm we use the method of splitting with
respect to physical processes. Initially we solve the set of ordinary differen-
tial equations which describe the temperature and the variations of species
concentration due to the branching and recombination reactions by using a
fourth-order Runge-Kutta algorithm. Next, the equations of heat and mass
transfer for fuel and radicals are solved by the method of alternating direc-
tions with the Crank-Nicholson scheme. The initial conditions are taken in
the form of the travelling wave solution (or autowave) of Eq. (5).

As shown in the previous section, depending on the Lewis number for fuel
there can emerge two types of instabilities: wave instabilities for LA > 1 or
cellular instabilities for LA < 1. We consider the solutions bifurcating from
the travelling waves separately in these parameter regions.

4.1. Wave instabilities and standing waves

As the critical parameter values for the wave instability (LA > 1) are
crossed in the parameter space a pulsating travelling solution emerges due
to a primary bifurcation. This type of solution is illustrated in Fig. 7,
where contours of the radical concentration profile w(x, y) are plotted for
three successive moments of time t1 = 80, t2 = 145, and t3 = 190. In
Fig. 7 only a part of the integration domain x ∈ [360, 410] is presented
for illustrative purposes, whereas the whole range of integration used in the
numerical scheme was x ∈ [0, 2000]. The level curves correspond to w = 0.02,
0.06, 0.1, 0.14, 0.18, 0.22 and 0.26. For the parameter values shown in the
figure caption the critical activation energy for the onset of wave instability
is β = 6.668..., the time period of pulsations is T ≈ 108, and the space period
of the solution in the transverse direction is about 100, which agrees well with
the prediction of the linear stability analysis. In Fig. 7 the offset propagation
coordinate, x−ct, is shown, where c is the average flame propagation velocity,
i.e. the time average of the flame position over a period does not change. The
sampling time, ti, is done so as to cover one period of oscillation and to show
the evolution of the characteristic radical concentration profile along a single
period. As seen in Fig. 7, once the neutral stability boundary is crossed
in parameter space the planar travelling wave solution exhibits both time
pulsations and flame front segmentation in the transverse direction. This
results in the formation of soliton-type radical “hotspots”.

15



In Fig. 7(a) there is a single spot located at y = 50. As long as there
is a sufficient amount of fuel in this region the concentration of the radicals
grows while the maximum remains at the same location. Increased radical
concentration results in faster recombination, local heating, and the forma-
tion of local temperature maxima . The temperature increase accelerates the
branching reaction and leads to a local depletion of the fuel concentration.
As a result the wmax growth changes to a decay of the radical concentration
maxima. While wmax is high the recombination reaction is still active and
the temperature is growing. This is illustrated in Fig. 8, where the dynamics
of umax(t) and wmax(t) are shown in panel (a) and the dependence of the lo-
cation of wmax in the coordinate plane (xmax, ymax) is plotted with diamonds
connected with the solid line in panel (b) for the same parameter values as
in Fig. 7. It should be noted that two peaks of radical concentration in Fig.
8(a) correspond to a single period of pulsations. Also in panel (b) of the same
figure only a half-interval of the integration domain along the y-axis is shown
since the rest of the figure can be obtained by symmetry. This phase in the
system dynamics corresponds to the profile (a) in Fig. 7 and is also marked
in Fig. 8 as t1. The increase in local temperature is accompanied by a flame
speed acceleration, which results in the advancement of the location of the
radical spot towards higher values of the coordinate x. At a certain stage the
heat release stagnates as wmax becomes small and the decay in umax is ob-
served. The radical hotspot cannot propagate along the x-axis since the fuel
is substantially depleted in the local region near y = 50. On the other hand,
on both sides of this peak of radical concentration along the y-axis there is
an excess amount of unburned fuel. The epicentre of the reaction splits into
two peaks which depart from the location at y = 50 towards the outer edges
of the integration domain i.e. to y = 0 and y = 100 lines. This corresponds
to the radical concentration profile in Fig. 7(b) as well as to the part of the
trajectories marked as t2 in Fig. 8(b). As the radical spots move along these
paths away from the line y = 50, the maximum local radical concentration
and temperature decay, the relative spot velocities become smaller and they
retard towards smaller values of the x-coordinate in Fig. 8(b). By the time of
the arrival of spots to the outer boundaries of the integration domain, y = 0
and y = 100, the radical concentration passes through a local minimum and a
different trend is observed: approaching fuel-rich regions near the boundaries
intensifies the branching reaction and wmax begins to regain its high values.
At this stage the spots remain at the same positions along y-axis and start to
advance forward to larger x values. The growth of the radical concentration

16



increases the heat release and the local temperature. The temperature rise
triggers the branching reaction, so that the fuel becomes locally depleted.
The maximum of wmax(t) is reached, followed by its subsequent decay. This
phase corresponds to Fig. 7(c) and points marked t3 in Fig. 8. The dynamics
is then repeated periodically forming a standing wave-like pattern. In our
numerical calculations, tens of periods of such pulsations have been observed
without any drift in the parameters of such oscillations.

It should be noted that the onset of pulsating solutions was also inves-
tigated for single-step models. In [26, 27, 28] the AEA nonlinear stability
analysis was carried out and it was shown that the planar pulsating waves
emerge as a result of the supercritical Hopf bifurcation. These results were
also verified numerically [30, 31]. In [32, 33] a model of gasless solid fuel
combustion of a cylindrical sample was considered. It was assumed that
combustion occurs only on the surface of the cylinder which resulted in two-
dimensional formulation of the problem. Numerical study showed that var-
ious types of propagating solid flames exist as parameters of the problem
are varied, including uniformly propagating planar flames, pulsating planar
flames, and flames exhibiting more complex spatiotemporal dynamics such
as different modes of hot spots propagation. These regimes are qualitatively
similar to standing waves reported here.

The properties of the bifurcation giving rise to standing wave solutions
is also studied. As the activation energy is increased from the critical value
βc, which is 6.668... in Fig. 7-8, pulsations in wmax(t) appear. These os-
cillations are small for β − βc ≪ 1 and are well described by the frequency
Imλ obtained from the linear stability analysis. The amplitude of oscillations
grow according to a root law as β is increased. The temperature oscillations
are small and the amplitude of pulsations do not exceed the level of several
percent from the adiabatic combustion temperature even for the relatively
large β − βc values. As for the fuel concentration profile, there are no no-
table peaks or troughs appearing as a result of the onset of standing waves.
However there emerges a phase shift along the y-direction as the critical bi-
furcation parameter value is crossed. This is observed as a change in the
pulsating front curvature in contrast to the previously planar travelling wave
prior to bifurcation. As the bifurcation parameter is increased the character-
istics of the standing wave, frequency of pulsations and wave length in the
y-direction, exhibit mild deviations from the values prescribed by the linear
stability analysis, Imλ and k−1 of the dominating instability. The average
flame speed, c, of the standing wave is smaller than the velocity of the un-
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stable travelling wave solution for the same parameter values. This agrees
with the results reported in [20].

4.2. Cellular instabilities and waves

For the case, LA < 1, cellular instabilities emerge as the neutral stability
boundary is crossed in parameter space. In contrast to the wave instability,
in this case the dispersion relation calculated at the critical parameter val-
ues does not provide the characteristic time and transverse length scales of
the cellular perturbation. For parameter values slightly beyond the stabil-
ity boundary, there appears an unstable mode with very weak coefficient of
exponential growth and large wave numbers. As we further modify the pa-
rameters, for example by increasing β, and move away from the bifurcation
conditions the wave number in the y-axis direction and the growth rate, Reλ,
of the dominating instability becomes larger. As a result the emergence of
the cellular instabilities becomes tractable with direct numerical integration
of the governing Eq. (5).

Initially, the instabilities cause minor deviations of the flame front which
resulted in the front being no longer planar, but corrugated. This fragmen-
tation of the flame front is also accompanied by the variations of the peak
value of the radical concentration along the y-axis. Variations of the temper-
ature and fuel profiles are less pronounced. After integration of the governing
equations over times of the order of several (Reλ)−1, which is 105 in the or-
der of magnitude, the solution relaxes to a stationary cellular wave, which
travels with constant speed along the x-axis without changing its shape in
the coordinate frame travelling with the wave. A typical cellular wave is
demonstrated in Fig. 9, where a contour plot of the radical concentration,
w(x, y), is shown for LA = 0.81, LB = 1, β = 9.5, and r = 0.1. Here x is the
co-moving coordinate travelling with the flame. The level curves correspond
to w = 0.0125, 0.025,..., 0.075. As in the previous contour plots, only part of
the integration domain x ∈ [400, 470] is presented in Fig. 9. The whole range
of integration was x ∈ [0, 800]. The length of the domain in the y-direction
is chosen to accommodate a single cellular structure. It should be noted
that for the parameter values in Fig. 9 the travelling wave losses stability at
βc = 5.55... Although the bifurcation parameter, β, is substantially altered
from this critical value in Fig. 9 the variation in the peak values of the rad-
ical concentration along the y-axis, ∆wy = maxy[maxxw] − miny[maxxw],
reaches only several percent of its maximum value. This is clearly seen from
the location of the level curves in Fig. 9. The nature of bifurcation is also
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different from the case LA > 1, since ∆wy grows linearly with the increase
of the bifurcation parameter, β. For the temperature and fuel concentration
profiles the cellular structure manifests only in the shift of the phase of the
front along the y-axis (or nonzero curvature of the flame front), whereas no
appreciable peaks are observed in the u and v distributions. Interestingly,
the speed of the cellular wave and the travelling wave solution (which is
unstable) are equal up to the numerical accuracy for determining the front
velocity. This, in addition to large times required for onset of cellular solu-
tions from the travelling wave solutions, makes this type of numerical study
of cellular structures very difficult.

5. Hydrogen-oxygen combustion

Although to date there is a good understanding of the hydrogen oxidation
chemistry which includes eight chemical species [34, 35], there is still a lack
of short reduced mechanisms for modelling the problems with multi time
and length scales such as studying the flame stability and time dependent
regimes of flame propagation. One of the first models of the H2 - O2 mixture
combustion was proposed in [10]. This model included the branching A +
B → 3B and the recombination B + B + M → P + M steps, where A
is the deficient component concentration, for example, O2, B is the H atom
concentration which is considered as the only radical involved in the reaction.
In [36] the steady-state approximation for O, OH and HO2 was adopted
and a similar model was derived and investigated for rich hydrogen-oxygen
flames. In this case the rate of the first global reaction is governed by the
elementary step H + O2 → OH + H and the rate of the second global
reaction is governed by elementary reaction H + H +M → H2 + M . In
[37] the two-step reaction mechanism was further developed. It was shown
to be capable of producing reasonably accurate predictions for the flame
structure and speed as compared to the data obtained from both the detailed
chemistry calculations and experiments. The two-step mechanism was used
in [38] to study the asymptotic structure of premixed hydrogen-air flames.
Recently in [11, 12], the model was tested using numerical calculations with
detailed mechanism of the reaction and it was demonstrated that the two-
step reaction model gives a good approximation of the flame propagation
velocity. As discussed in [11, 12], the rate of H recombination is governed
by two elementary reactions H + H +M → H2 +M and H + O2 +M →
HO2 + M . The H-radical recombination with O2 has a higher rate and
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must be faster in the presence of appreciable oxygen concentration. The
square-law termination reaction however, could play a substantial role in the
case of hydrogen rich mixtures and/or slow recombination regimes when the
concentration of H atoms becomes significant and O2 is rapidly depleted in
the course of fast branching. In [39], the mechanism was further modified
to include an initiation reaction H2 + O2 → HO2 + H and to relax the
equilibrium assumption for hydroperoxyl radical. The resulting model was
found to be suitable for analysing deflagration, autoignition and diffusion
hydrogen-air flames. It should also be noted that in the limit of lean hydrogen
air flames the steady state approximation can be applied to the H radicals as
well and the mechanism can be reduced to just a single-step reaction scheme
as was demonstrated in [40].

In [12] a detailed kinetic calculation for the stationary propagating flame
in a 26/13/61 mixture of H2/O2/Ar was carried out at pressure below 1
atm. Here we estimate the main parameters of such flames based on the
Zeldovich approach and compare these predictions with the detailed kinetic
analysis data from [12]. The governing equations in this case are similar to
Eq. (1), where in the third equation the branching rate should be doubled
as in equation (1) of [11]. This is due to a different stoichiometry of the
global branching reaction. Next, we introduce the nondimensional variables
Eq. (3) and (4), where the reference temperature and mass are now equal
to T ∗ = qFYH/cp and M∗ = WA/2Y

∞

A respectively. Here A refers to O2

and B to H , YH = 2Y ∞

A WB/WA is the characteristic scale for the radical
concentration, so that w = YB/YH . The dimensionless activation energy
is now β = Ecp/qFRYH . Substituting these definitions into Eq. (1) we
obtain Eq. (5). The thermodynamic and kinetic data for the elements of
the gas mixture and the rates of the elementary steps involved in the overall
two-step kinetic mechanism are obtained from the NIST database [41, 42].
We consider the case of the ambient temperature Ta = 370K and pressure
p = 1 atm as in [12]. This gives the following values for the dimensionless
parameters: β ≈ 3.9, r ≈ 0.002, LA ≈ 2, and LB ≈ 0.3. These values
are within the range of parameters considered in the current article and
correspond to the stable travelling combustion wave with slow recombination
regime and low recombination parameter value, which is also the case for [12].
We undertake numerical calculations with the given set of parameters and
recast the results back to the dimensional form which yields the flame speed,
c ≈ 4 m/s and the burned temperature Tb ≈ 2600K. This is very close to
the flame speed, c = 3.8 m/s obtained in [12] using the Zeldovich asymptotic
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analysis approach. However, both approaches give higher values of the flame
velocity in comparison to the numerical calculations using the detailed kinetic
scheme, which is 3.37 m/s according to [12]. The characteristic distributions
of molar concentrations of species and temperature are plotted in Fig. 10 for
the case of p = 1 atm. Although there are no data for direct comparison,
there appears to be good qualitative correspondence to the results reported in
[12, 43]. For instance, in [12] the maximum concentration of H is estimated
as ≈ 0.09 using the Zeldovich asymptotic analysis and ≈ 0.08 by direct
numerical calculation based on the detailed kinetics. In our calculations this
value is 0.107.

6. Conclusions

In this article the stability of premixed combustion waves in the two-
dimensional Zeldovich-Liñán model is considered in the adiabatic limit. For
given parameter values the combustion wave has a unique speed. The struc-
ture of the travelling combustion wave is found to depend on the recombina-
tion parameter, r, showing the relation between the characteristic times of
the branching and recombination reactions. For r < 1, the slow recombina-
tion regime of flame propagation is observed. For r > 1 the recombination
reaction is faster than the branching reaction and the fast recombination
regime is encountered. For fast recombination the asymptotic analysis gives
a good prediction of the flame velocity.

The stability of the combustion waves in the Zeldovich-Liñán model was
investigated by the Evans function method and by direct integration of the
governing partial-differential equations. The results from both methods are
found to agree with a high degree of accuracy. It was determined that the
combustion wave loses stability due to either wave or cellular instabilities
depending upon the Lewis number for fuel. The neutral stability boundary
is found on the LA versus β plane. For the case of LA > 1, the combustion
wave loses stability with respect to wave perturbations. The neutral stability
boundary LA(β) is a monotonically decaying function, which tends to one
for large values of activation energy and grows infinitely as β is decreased to
some critical value. For the case of LA < 1, the combustion wave loses sta-
bility with respect to cellular perturbations. The neutral stability boundary,
LA(β), is a monotonically increasing function. As β tends to zero LA dimin-
ishes and as β becomes large LA tends to one. In both cases, the location of
the neutral stability boundary is qualitatively similar to the results for the
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one-step adiabatic model. An important experimental parameter, which is
also present in the one-step models, is the ambient temperature. It is demon-
strated that the initial preheating of the fresh mixture has a stabilizing effect
on the combustion waves. The marginal boundary for the onset of wave
instability shifts to larger values of β and the critical parameter values for
cellular instability move to smaller LA values. This results in the increase of
the region of the stable travelling combustion waves in the parameter space
and qualitatively agrees with the prediction of the one-step model.

Parameters LB and r are specific to the Zeldovich-Liñán model and can-
not be reproduced in the single reaction step analysis. The variation of the
recombination parameter also has a strong effect on the stability of the com-
bustion wave. For the slow recombination regime r < 1, the decrease of
r shifts the neutral boundary to larger values of the activation energies for
LA > 1 and towards smaller values of β for the case LA < 1. Thus reduc-
ing the recombination parameter stabilizes the combustion waves. As r is
increased above unity, the region of stable travelling wave solutions becomes
smaller. A tendency of the neutral stability boundary to certain limiting
behaviour is observed i.e. increasing the recombination parameter by almost
an order of magnitude only slightly alters the critical parameter values for
both wave and cellular instabilities. The effect of varying LB on the stability
of combustion waves was also studied. For the fast recombination regime,
an increase in LB shrinks the region of stable combustion, i.e. for heavier
radicals the flame is less stable. For the slow recombination regime, the same
effect is observed for cellular instabilities, whereas for wave perturbations the
behaviour is more complex and depends on β.

We would like to point out that our current study of the combustion waves
in the Zeldovich-Liñán model, which possesses a second-order recombination
reaction, has properties that are more common to the adiabatic one-step
models. This is in contrast to the first-order recombination reaction studied
in [13, 17, 18, 19, 20]. In the latter model, the existence of the combustion
wave extinction and the presence of the Bogdanov-Takens bifurcation point
are demonstrated even for the adiabatic case. Similar behaviour can be
expected for the nonadiabatic Zeldovich-Liñán model [4] and the clarification
of this issue is the subject of our future investigation. In other words, the
kinetics of the recombination reaction, specifically the order of the reaction,
has an effect on the properties and stability of the combustion waves.

It is shown that as the critical parameter values for the wave instabili-
ties are crossed in the parameter space, pulsating two-dimensional solutions
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emerge. For parameter values close to the neutral stability boundary the
time period of oscillations and the transverse space period of the emerging
solutions agree with the dominating wave instability characteristics obtained
from the linear stability analysis. The primary bifurcation causing the emer-
gence of the pulsating solutions is found to be of supercritical nature. In
terms of the radical concentration, the travelling pulsating solutions have
the structure of soliton-type radical spots which propagate along certain tra-
jectories. In this paper we have considered the zero-flux conditions in the
transverse direction and the length of the domain was chosen so as to accom-
modate a single period of the pulsating solution in the y-direction. Obviously,
if different boundary conditions are imposed, solutions with more complex
dynamics can emerge. The propagation of the standing wave solutions is ac-
companied by oscillations of the peaks of the concentration of radicals. The
amplitude of such oscillations is found to follow the square-law dependence
on the “beyond-critical” parameter (the difference between the current and
marginal parameter values). The amplitude of oscillations for the radical con-
centration can reach the order of tens of percent from the maximum radical
concentration. Although the temperature pulsations are an order of magni-
tude smaller than the oscillations of the radical concentration it still should
be possible to observe these pulsations experimentally since the luminosity
is proportional to the fourth power of temperature.

As the critical parameters for the onset of cellular instability are crossed
in parameter space, a two-dimensional cellular wave bifurcates from the one-
dimensional planar travelling wave solution. The cellular wave travels with
constant speed without changing its shape in the co-moving coordinate frame.
The flame speed for the cellular solution branch is found to coincide with the
velocity of the planar travelling wave solution up to the numerical accuracy
of our calculations, which was of the order of one percent for the determi-
nation of the front velocity. The radical concentration profile appears as a
bell-shaped function of the longitudinal coordinate, whereas the peaks of the
radical distribution are shifted in phase along the transverse coordinate i.e.
a front corrugation occurs so that the radical profile looks as a curved front.
The maximum values of the radical concentration in the longitudinal direc-
tion also vary as we change the transverse coordinate. These variations are
relatively small and are of the order of several percent from the maximum
value of the concentration of the radical. In contrast to the case of standing
waves, the amplitude of such variations is found to be linearly dependent on
the “beyond-critical” parameter. The temperature and fuel concentration
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profiles differ from the travelling wave profiles in the curved structure of the
fronts. There are no appreciable peaks of temperature in comparison to the
travelling wave profiles. These properties of flame speed and structure of the
cellular waves could obstruct their experimental observation, unless the pa-
rameters are substantially shifted away from the neutral stability boundary.

As follows from the preliminary comparison of the results with the data
known from the literature, the Zeldovich-Liñán model has the potential to
estimate the flame speed and feasibly reproduces the flame structure for the
deflagration of hydrogen-oxygen mixture. Further investigation is required
to apply this approach to different stoichiometries and to different physi-
cal conditions to validate the results with respect to experimental data for
hydrogen-oxygen flames. Of special interest is undertaking such comparisons
for the prediction of the limits of stability and emergence of pulsating and
cellular flames with complex dynamics.

7. Acknowledgements

V.V. Gubernov, A.V. Kolobov and A.A. Polezhaev would like to acknowl-
edge the financial support from the Russian Foundation for Basic Research
grant 11-01-00392 and the Dynasty Foundation. H.S. Sidhu would like to ac-
knowledge the support of the Australian Research Council Grant DP0878146.

References

[1] Y. B. Zeldovich, Zhurnal Fizicheskoi Khimii 22 (1948) 27–48.
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8. List of captions

Fig. 1 Dependencies of (a) the speed, c, of combustion wave and (b)
the maximum value of the concentration of radicals, wmax, on the activation
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energy, β, for two values of recombination parameter r = 0.02 and r = 50
and LA = LB = 1. Graphs are plotted in logarithmic scale.

Fig. 2 Stability diagram on LA vs. β plane for LB = 1, ua = 0 and vari-
ous values of r = 0.02, 0.1, 1, 10, and 50 shown with curves 1, 2, 3, 4, and 5,
respectively. The solid and the dashed lines represent the critical parameter
values for the emergence of wave instability and the one-dimensional Hopf
bifurcation, respectively. The parameter region corresponding to stable so-
lutions is located below the critical curves in each case. A sketch of a typical
dispersion relation for the case of the wave instability is shown in the inset
in the top-right corner.

Fig. 3 The dependence of kmax (a) and wmax (b) on β for LB = 1, ua = 0,
r = 10 and r = 0.1.

Fig. 4 Stability diagram on the LA vs. β plane for LB = 1, ua = 0 and
various values of r = 0.02, 0.1, 1, 10, and 50. A sketch of a typical dispersion
relation for the case of the cellular instability is shown in the inset in the
bottom-right corner.

Fig. 5 Stability diagram in the LA vs. β plane for r = 0.1, LB = 1 and
various values of ua = 0.0 and 0.01 in case LA > 1 (a) and LA < 1 (b).

Fig. 6 Stability diagram on the LA vs. β plane for r = 10, LB = 1 and
two values of ua = 0.0 and 0.01 for the cases LA > 1 (a) and LA < 1 (b).

Fig. 7 Contour plots of the radical concentration profiles, w(x, y), sam-
pled at three successive moments of time t1 = 80 in panel (a), t2 = 145 in
panel (b), and t3 = 190 in panel (c) for LA = 10, LB = 1, β = 7.5, and
r = 0.1.

Fig. 8 Panel (a) shows the values of the maximum radical concentration
(diamonds connected with solid lines) and temperature (crosses connected
with the dashed lines). Panel (b) shows the dependence of the location y
versus x on the maximum of the radical concentration. The parameters are
chosen as in Fig. 7. The moments of time at which the profiles are sampled
in Fig. 7 are marked as dashed lines in (a) and are denoted by bold squares
in (b).

Fig. 9 Contour plots of the radical concentration profiles, w(x, y), for
LA = 0.81, LB = 1, β = 9.5, r = 0.1.

Fig. 10 Concentration of H and O2 (left axis) and temperature (right
axis) profiles for combustion wave in 26/13/61 H2/O2/Ar mixture at p = 1
atm.
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