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The fast-time instability of the Li~nn�aan’s diffusion-flame regime is

10investigated asymptotically and numerically by employing the fast

inner-zone time and length scales, as a model problem for the cellu-

lar instability in diffusion flames with Lewis numbers far from unity

by an amount of order unity. The stability analysis revealed the full

spectral nature, particularly near the saddle-node bifurcation con-

15dition corresponding to the minimum reduced Damköhler number

D. Contrary to the conventional belief, the minimum D condition,

commonly known as the Li~nn�aan’s diffusion-flame extinction con-

dition, is not necessarily an extinction condition for flames with

Lewis numbers less than unity which can survive beyond the saddle-

20node bifurcation condition. The cellular instability could emerge

upon passing the saddle-node bifurcation condition. The cellular

instability is thus observable for near-extinction diffusion flames

with Lewis numbers less than unity, as predicted by the previous

experimental studies and the linear stability analysis employing the

25NEF limit. The stable parametric regions of small wave number

and Lewis number just below unity were not predicted by the
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fast-time instability. But these parametric regions lie in the inner

parametric layer of the distinguished limit employed in this analysis,

so that the leading-order behavior is not contradictory with the

30previous experimental and analytical results.

Keywords: activation energy asymptotics, Li~nn�aan’s diffusion-flame

regime, fast-time instability

INTRODUCTION

Because this volume of Combustion Science and Technology is a commem-

35orative issue for Forman Williams’s 70th birthday, this introduction is

written from a perspective of the first author who is a former student

of Forman Williams. I would like to begin this paper by mentioning

how I stumbled into the problem of diffusion-flame instabilities. Of

course, Forman Williams is a main player in this story.

40It was the year 1993 when I was working for Forman Williams on the

problem of acoustic instability in liquid propellent rocket engines. One

day he handed me a paper on an experimental study on the diffu-

sional-thermal instability in diffusion flames (Chen et al., 1992). The

diffusional-thermal instability in premixed flames is well known to the

45combustion research community (Sivashinsky, 1977; Joulin and Clavin,

1979; Clavin, 1985), however that in diffusion flames had seldom been

observed or only occasionally studied. Even though some previous pub-

lications on the subject (Garside and Jackson, 1953; Kirkby and

Schmitz, 1966; Dongworth and Melvin, 1976; Ishizuka and Tsuji,

501981) exist, the findings in those papers are often fortuitous, so that

the physical nature of the problem was hardly understood. It was only

1992 when Paul Ronney and his colleagues took a more systematic

approach to experimentally investigate the diffusion-flame counterpart

of the diffusional-thermal instability, and they found that periodic

55quenching marks could be formed in near-extinction diffusion flames

with effective Lewis numbers much lower than unity. Their paper was

presented in the 24th Symposium (International) on Combustion.

Forman Williams of course did not forget to add a comment that it will

require only a ‘‘simple’’ linear stability analysis to prove that the experi-

60mental findings are caused by the diffusional-thermal instability. The

problem was handed down to me because during that time I was working

on the acoustic response of diffusion flames (Kim and Williams, 1994),
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that can be a subject as close to intrinsic flame instability as it can be. I

started working on the problem since that moment, but it turned out to be

65that the stability analysis on diffusion-flame instability by the diffusional-

thermal mechanism is anything but a ‘‘simple’’ linear stability analysis.

Nevertheless, I am still very grateful that the problem was not simple.

It still remains as one of the most important research topics of mine,

and many problems that I am working on now have sprung from the

70problem. I could say that the problem of diffusional-thermal instability

in diffusion flames is the backbone of my research career, and I must

thank Forman Williams for giving me such an opportunity.

Before discussing the linear stability analysis, it is useful to point out

that the activation energy asymptotics for diffusion flames has a crucial

75distinction from that of premixed flames. Because the leading-order

solution to the diffusion-flame structure is the Burke-Schumann solution,

effects of finite-rate chemical kinetics in diffusion flames first appear in

the Oðb�1Þ reactant leakage terms (where b denoting the Zel’dovich

number), whereas those in premixed flames appear from the leading

80order. If the conventional near equidiffusional flame (NEF) limit

(Buckmaster and Ludford, 1982), where deviation of the Lewis number

from unity is only of Oðb�1Þ, is adopted, finite-rate chemical-kinetic

effects appear in Oðb�2Þ. In order to avoid the situation carrying the

analysis into that high order, Kim and Williams (1996)Q1 took a limit that

85the Lewis number is allowed to deviate from unity by an amount of order

unity. However, the instability in that limit was so strong that the wave-

length corresponding to the fastest growing mode was much shorter than

the conventional convective-diffusive length scale, and the stability-

analysis results obtained by using the length scales of the convective-

90diffusive layer and diffusive-reactive layer had to be composed to predict

the properties of the cellular instability in diffusion flames. Eventually

the linear stability analysis employing the NEF limit was carried out later

(Kim, 1997) to obtain the instability results exhibiting its full nature in

the convective-diffusive length scale only, even if the analysis was far

95more complex than its premixed flame counterpart.

For the distinguished limit of ðL� 1Þ ¼ Oð1Þ, the unconventional

analysis method employing the composite expansion led the results for

the linear stability analysis to be somewhat awkward. However, the

analysis still provides us with some valuable insights to the problem of

100diffusion-flame instability which might have been overlooked unless

the problem is tackled in such an unorthodox manner. In particular,
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the analysis revealed that the fast-time instability would be important for

flames with Lewis number far from unity. It is the purpose of the present

paper to shed more light on the problem of fast-time instability in diffusion

105flames because it is perhaps the most succinct form of the instability prob-

lem in diffusion flames and possesses all the necessary properties to

explain the physical nature of the diffusional-thermal instability.

The fast-time instability was first considered by Peters (1978) to

examine stability of the inner-zone structure of the Li~nn�aan’s premixed

110flame regime. Then, the analysis was extended to diffusion flames by

Buckmaster et al. (1982)Q2 , who coined the terminology of the ‘‘fast-

time instability’’ in the paper to emphasize the fact that the temporal

coordinate is scaled by the fast inner-zone time scale. Later, those

analyses were further extended to include the effects of three-

115dimensional reaction zone by Pereira and Vega (1990), of Lewis num-

bers greater than unity by Stewart and Buckmaster (1986), of Lewis

numbers less than unity by Lozinski and Buckmaster (1995), and of the

damping effect coming from the outer layer by Kim (1998). However, none

of these papers are concerned with the full spectral characteristics of the

120fast-time instability.

This study presents the spectral characteristics of the fast-time

instability for diffusion flames. Particular attention is focused on the

cellular instability occurring with the fast-time scaling, so that the

Lewis number will be restricted to be less than unity. Some of the spec-

125tral properties of the fast-time instability were examined when the cellu-

lar instability of diffusion flames was studied by Kim et al. (1996).

However, the fast-time instability was not the main focus of the study,

so that its complete nature was not properly emphasized and the

asymptotic analysis was not in a better form. The present paper intends

130to fix the shortcomings in the previous results in order to provide a bet-

ter overall picture of the fast-time instability for diffusion flames with

Lewis numbers less than unity. The asymptotic analysis is further

improved by introducing a more formal bifurcation technique, and its

results are now better compared with the numerical solutions. In the

135present study, the fast-time instability is solved by the asymptotic

method and numerical method. Near the bifurcation point, correspond-

ing to the turning point of the Li~nn�aan’s diffusion flame regime (Li~nn�aan,

1974), the asymptotic properties are derived and used as a guideline

to the numerical analysis, employing the Evans function method

140(Sandstede, 2002).
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In the following section, the governing equations for the mean and

unsteady fields are introduced along with a brief description of the numeri-

cal method, and the mean field solution, which serves as the background

solution to the instability problem, is presented in the third section. In the

145fourth section, the instability properties for planar disturbances are first

examined by the asymptotic method to yield the condition of marginal

stability and the growth behavior in the vicinity of the turning point.

The asymptotic results are compared with the numerical results. The

analysis is then extended to general wave numbers by using the numerical

150calculations. Based on the asymptotic results, obtained for the planar

instability, an approximate dispersion relation and the corresponding non-

linear evolution equation is derived. Finally, the concluding remarks and

the future extensions to oscillatory instability and other activation energy

asymptotic regimes are discussed in the fifth section.

155CONSERVATION EQUATIONS

Since the conservation equations describing the inner structure of dif-

fusion flames have been shown perhaps too many times elsewhere, the

rather lengthy derivation, employing the activation energy asymptotics,

is not presented here. The final equations for the mean field and

160unsteady field will be written here directly. The readers who wish to find

the detailed derivation steps should refer to the previous paper by Kim

et al. (1996).

The Structure Equation for the Mean Field

The mean field inner structure is described by the famous Li~nn�aan’s

165canonical equation for the diffusion flame regime:

d2H

dn2
¼ DðH� nÞðHþ nÞ expf�ðHþ cnÞg

Hn ! �1 as n ! �1; ð1Þ

where H is the inner variable for the temperature profile and n is the

inner coordinate. The both variables stretched by the Zel’dovich number

that is the primary expansion parameter for the activation energy asymp-

170totics. The fuel and oxidizer concentrations in the inner layer are given

by the coupling relationship as

HF ¼ H� n HO ¼ Hþ n: ð2Þ
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In the above mean field structure equation, the factor c measures the

degree of asymmetry in the thermal diffusion across the reaction zone. If

175c ¼ 0, the heat losses to both the fuel and oxidizer sides are equal. How-

ever, if c is positive (negative), the heat loss to the oxidizer (fuel) side is

greater. Therefore, the reaction in the oxidizer (fuel) side freezes faster

and the fuel (oxidizer) leakage is expected to be greater than the oxidizer

(fuel) leakage. For c ! 1 (c ! �1), the flame becomes nearly adiabatic

180to the oxidizer (fuel) side boundary, and the flame can sustain an

extremely large fuel (oxidizer) leakage. Since the problem is symmetric

to c, we only need to solve for 0 � c < 1. In addition, D is the reduced

Damköhler number that is rescaled to be of order unity in the inner layer.

For the notational brevity, the reduced Damköhler number D will be just

185called Damköhler number unless the distinction from the unscaled

Damöhler number is necessary. In the above equation, the mean-field

problem is posed as that of finding the H profile as a function of D. It
should be also kept in mind that the solution for H is not necessarily a

single valued function of D.

190The Conservation Equations for the Linear Instability Analysis

In order to examine the stability of the inner flame structure, its time-

dependent response on perturbations, imposed on the mean field

solution, is considered. The differential equations describing the time-

dependent behavior of an infinitesimally small normal-mode pertur-

195bation are written as

d2w

dn2
� ðS þ K2Þw ¼ d2wF

dn2
� ðLS þ K2ÞwF ¼ d2wO

dn2
� ðLS þ K2ÞwO

¼ DðH� nÞðHþ nÞe�ðHþcnÞ wF

H� n
þ wO

Hþ n
� w

� �
; ð3Þ

where the Lewis number L is assumed to be identical for both the

fuel and oxidizer. The growth rate S and the wave number K are scaled

by the characteristic time and length of the inner diffusive-reactive

200layer, so that S and K are respectively two and one order of magnitude

higher than their counterparts measured in the outer diffusive-convective

layer.

Since the differential equations and the boundary conditions for wF

and wO are identical as a consequence of the equal Lewis numbers of the

205two reactants, the fuel and oxidizer concentration perturbations have
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a relationship wF ¼ wO � vðnÞ. Finally we have a simpler set of equations,

d2w

dn2
�ðSþK2Þw¼ d2v

dn2
�ðLSþK2Þv¼De�ðHþcnÞ½2Hv�ðH2�n2Þw�; ð4Þ

subject to w ! 0 and v ! 0 as n ! �1, from matching with the outer

region where the perturbations are found to be vanishing at the leading

210order. This matching condition arises from the vanishing perturbations

outside of the inner layer because the perturbations are too fast and

too short for them to survive in the outer layer. Because of this shorter

time scale, instabilities found with this scaling often have been called

fast-time instabilities (Buckmaster et al., 1983). The terms involving

215S represent the time-dependent effects in the reaction zone, and the

terms involving K2 account for the transverse diffusion in that zone, so

that the reaction zone is neither planar nor quasi-steady any longer.

Even if the vanishing perturbation is the correct matching condition,

it is often impractical to employ the strong boundary condition because

220it requires too big a calculation domain for the solution to converge to

the desired boundary condition. Therefore, we rather employ a weaker

boundary condition given as

dw
dn

! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ K2

p
w;

dv
dn

! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LS þ K2

p
v; as n ! �1; ð5Þ

which is obtained by expanding Eq. (4) for n ! �1 and expresses the

225exponential decaying toward the boundary region.

In this stability problem, the Lewis number L and Damköhler num-

ber D are the main control parameters. In this stability analysis, the prob-

lem is posed as that of finding the growth rate S as a function of the wave

number K while the Lewis number L and the Damköhler number D are

230specified. From these instability spectra, we seek to find the instability

characteristics of the diffusion-flame inner structure.

Numerical Method

The key tool that is used for numerical investigation of stability of dif-

fusion flames is the Evans function method (Sandstede, 2002). This

235method is relatively new for combustion science. Previously the Evans

function approach was employed to study the onset of pulsating instabil-

ities in premixed flames with Lewis number L > 1 (Gubernov et al.,
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2003). In this paper, we extend the applicability of the method to inves-

tigate the instabilities of the different nature, namely, transversal or cellu-

240lar instabilities in diffusion flames, which are dominant for the case of

L < 1.

Prior to solving for the spectral problem, we solve the mean-field

inner-zone problem numerically using shooting and relaxation meth-

ods. As a first step we solve Eq. (1) employing the fifth-order

245Runge-Kutta method in an interval n 2 ½�L1;L2�, where L1;2 > 0 are

taken to be sufficiently large. In our calculations L1;2 is chosen to keep

the right-hand side of Eq. (1) to be less than 10�20 for n ! �L1 or L2.

On the boundaries of the interval of integration, the reaction term

(right-hand side) in Eq. (1) can be neglected and boundary conditions

250jHnj ¼ 1 can be used. Our numerical integrator allows us to estimate

the local relative error, which has been set to be less than 10�5 in

our calculations.

As a second step the solution obtained with the shooting method is

used as a guess solution for a more accurate method, namely relaxation.

255Here we would like to refer the reader to Gubernov et al. (2003) and

references therein for the detailed description of the method. The stab-

ility analysis of the diffusion flames carried out in the following sections

is based on the accuracy of our approximation of the solution to Eq. (1).

The relaxation routine allows us to control the average local correction

260made on each iteration step. The solution is considered to be resolved

if the correction is less than 10�15.

Once the mean-field solution is obtained, we solve for the linear

stability problem numerically by using the Evans function method, which

is described in detail in Gubernov et al. (2003). Employing the method

265described in the paper, the spectral problem in Eqs. (4) and (5) can be

reduced to the search of zeroes of the Evans function DðSÞ, which has

a very important property (Sandstede, 2002): DðSÞ ¼ 0 for some given

value of S if and only if for this value of S Eq. (4) has at least one solution

bounded for both n ! �1 and satisfying the boundary conditions in

270Eq. (5). Consequently, we can look for zeroes of the Evans function,

instead of solving linear stability problem in Eqs. (4) and (5) directly.

In general both D and S are complex, however, in this paper we consider

cellular instabilities only (L < 1) and S can be taken to be a real number.

Equation DðSÞ ¼ 0 is then solved numerically by using the Newton-

275Raphson method for fixed K . This enables us to determine the dispersion

relation SðK2Þ for any given parametric values of c, L, and D.
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MEAN-FIELD SOLUTION

Even if the basic characteristics for the solution to Eq. (1) are already

given by Li~nn�aan, the mean-field solution is presented here again because

280it serves as the base solution to the instability problem. In addition, its

higher-order derivatives are essential to obtain the asymptotic properties

of the spectrum to Eq. (4).

General Characters of the Mean-Field Solutions

The overall characteristics of the mean-field solution could be better

285represented by the plot of the fuel leakage aF ¼ HFðn ! 1Þ �
ðH� nÞðn ! 1Þ. Here, only positive values of c are considered because

the problem is symmetric to the negative c if aF is replaced by

aO ¼ HOðn ! �1Þ � ðHþ nÞðn ! �1Þ. Therefore, aF will be simply

denoted by a for the natational brevity. The variation of a with D is

290shown in Figure 1, and it can be found that there exist minimum values

of D, below which solutions do not exist. The condition of minimum D is

Figure 1. Dependence of the fuel leakage a on the reduced Damköhler number D for

c ¼ 0:0, 0:1, 0:2, 0:3, 0:4, and 0:5.
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a saddle-node bifurcation point (or turning point), in the vicinity of

which interesting dynamic behaviors are to be found, and our attention

will be focused on analyzing the instabilities in this region. In the original

295paper by Li~nn�aan (1974), the minimum D condition was identified as the

first approximation to the extinction condition, and the condition is still

widely used to identify the extinction conditions in diffusion flames.

However, the condition of minimum D does not necessarily correspond

to the extinction condition if the Lewis number deviates from unity by

300an order of unity (Kim and Williams, 1997). For L < 1, the extinction

condition is delayed beyond the saddle-node bifurcation point of

Eq. (1) and the region between the saddle-node bifurcation point

and the shifted extinction condition turns out to be the window of

opportunity for the instabilities to arise.

305The value of minimum D as a function of c is

Dm ¼ efð1� jcjÞ � ð1� jcjÞ2 þ 0:26ð1� jcjÞ3 þ 0:055ð1� jcjÞ4g; ð6Þ

where the subscript m denotes the condition of minimum D (Li~nn�aan,

1974). Contrary to the ordinary belief that the above equation is

obtained by numerical fitting, it is an analytic correlation. The two-term

310expansion of Dm can be obtained by the analytic procedure shown in the

appendix (Clavin and Li~nn�aan, 1984). With an additional numerical result

at c ¼ 0, the above four-term correlation is obtained, which is found to

be in excellent agreement with the numerical data throughout the entire

range of c as shown in Figure 2.

315As c approaches unity, the fuel supply side becomes adiabatic, so

that the flame tends to stay alive until the fuel leakage becomes extremely

large. Under this circumstance, the inner structure resembles that of pre-

mixed flame and the so-called premixed-flame regime arises. Since this

inner structure falls into a different distinguished limit, our attention will

320be rather restricted to the case where c is close to zero. On the other

hand, the instability properties near c ¼ 1 will be left as a future work.

Higher-Order Derivatives of the Inner Solutions

In order to obtain the asymptotic properties of the instability spectrum

SðK2Þ, it is essential to find the higher-order properties of Eq. (1). The

325method to obtain such properties, including the first- and second-order

derivatives of the inner structure with respect to the fuel leakage, is

presented here. In principle, the higher-order derivatives may be
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obtained by solving the problem defined in Eq. (1) for several values of a
and then differentiating numerically. However, this procedure is quite

330time-consuming but not sufficiently accurate. An alternative procedure

is thus employed here.

The alternative procedure to calculate the derivatives with respect to

the fuel leakage involves expansion of Eq. (1) arising from small

increment of the fuel leakage, denoted by a1, about a given value of the

335fuel leakage a0. Since H and D are parametrically dependent on a, we
may have the expansions in the form

a ¼ a0 þ a1;

Hðn; aÞ ¼ Hðn; a0Þ þ
@h
@a

ðn; a0Þa1 þ � � � ¼ Hðn; a0Þ þ Wa1 þ � � � ;

DðaÞ ¼ Dða0Þ þ
dD
da

���
a¼a0

a1 þ � � � ¼ D0ð1þ D0a1 þ � � �Þ;

9>>>>=
>>>>;

ð7Þ

where

W � @h
@a

���
a¼a0

; D0 � d lnD
da

���
a¼a0

; D0 � Dða0Þ ð8Þ

Figure 2. Dependence of Dm on c. The solid line is plotted according to Eq. (6), whereas the

squares represent the results obtained numerically.

FAST-TIME CELLULAR INSTABILITIES 11



340Substituting the above expansions into Eq. (1) and collecting the terms at

order a1 alone, we find the problem for determining W to be

d2W

dn2
¼ D0e

�ðHþcnÞ½ð2H�H2 þ n2ÞWþ D0ðH2 � n2Þ�;

dW
dn

! 0; as n ! �1:

9>>=
>>; ð9Þ

To assure that the matching condition for the fuel leakage,

a ¼ ðH� nÞjn!1, is satisfied, a supplementary condition to Eq. (9) must

345be appended

a0 þ a1 ¼ Hðn; a0Þ þ Wa1 � n; as n ! 1: ð10Þ

Since a0 ¼ ðH� nÞjn!1, the applicable boundary condition for Eq. (9) is

then found to be

W ! 1 as n ! 1: ð11Þ

350Solution to Eq. (9) with the supplementary condition in Eq. (11) yields

a unique function W, eigenvalue D0 and a constant value for Wð�1Þ cor-
responding to r ¼ daO=daF , required in the dispersion relation. For

c ¼ 0, r ¼ 1 for all values of a thanks to the symmetry, and the corre-

sponding numerical results for D0 are shown in Figure 3. In the figure,

355one should note that D0 (or a) is a single value function while moving

along the solution branch shown in Figure 1. Therefore, it is desirable

to express the mean field and spectrum as a function of D0 (or a)
instead of D.

Since D0 is zero at the saddle-node bifurcation point, the second-

360order derivative is needed in order to express D0 in the region while car-

rying out the bifurcation analysis. Here, we seek the solution in the

form,

a ¼ am þ a1;

Hðn; aÞ ¼ Hðn; amÞ þ
@h
@a

ðn; amÞa1 þ
@2h
@a2

ðn; amÞ
a12

2
þ � � �

¼ Hðn; amÞ þ W0a1 þ W1
a12

2
þ � � � ;

DðaÞ ¼ DðamÞ þ
dD
da

���
a¼am

a1 þ
d2D
da2

���
a¼am

a12

2
þ � � �

¼ Dmð1þ D0
ma1 þ D00

m

a12

2
þ � � �Þ;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð12Þ
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where D0
m ¼ 0 and

D00
m � 1

Dm

d2D
da2

���
a¼am

Substituting the above expansion into Eq. (1), the conservation

equations for the first two orders of expansion are found to be

LW0 ¼ 0 ð13Þ

LW1 ¼ V2W
2
0 þ V0D

00
m ð14Þ

370where the linear differential operator L and the potential functions

ViðnÞ are given as

L ¼ dnn � V1ðnÞ
V0ðnÞ ¼ Dme

�ðHþcnÞðH2 � n2Þ
V1ðnÞ ¼ Dme

�ðHþcnÞð2H�H2 þ n2Þ
V2ðnÞ ¼ Dme

�ðHþcnÞð2� 4HþH2 � n2Þ

ð15Þ

Figure 3. Dependence of D0 on D for c ¼ 0.
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Obviously, W0 turns out to be the derivative of H with respect to a at the

turning point, and its solution can be obtained by integrating Eq. (9) with

375the constraint D0 ¼ 0. At order of a12, we have the inhomogeneous term

V2W
2
0 þ V0D

00
m and solution to Eq. (14) exists only if the projection of the

inhomogeneous term to the homogeneous eigenfunction W0 vanishes.

Consequently, we have

hV2; W
3
0i þ hV0; W0iD00

m ¼ 0 ð16Þ

380Therefore, the curvature of D� aF curve becomes

D00
m ¼ �hV2; W

3
0i

hV0; W0i
ð17Þ

The value of D00
m at c ¼ 0 is found to be 0.8220. In the limit of c ! �1, the

asymptotic expression for D00
m is also given as (Kim, 1997)

D00
m ¼ ð1� jcjÞ2

2
ð18Þ

385

SPECTRAL SOLUTION TO THE FAST-TIME INSTABILITY

Once the mean-field solution is obtained, the linear stability of exter-

nal disturbances can be examined. In principle, the spectral problem

in Eq. (4) with the boundary condition in Eq. (5) could be solved

390numerically. However, we may find some local asymptotic properties

of the spectrum particularly in the neighborhood of the saddle-node

bifurcation point and the asymptotic solutions then serve as the guide-

line to the numerical simulations. Comparison of the asymptotic solu-

tions with the numerical solutions will certainly provide a better

395understanding of the spectral problem. In this paper, we will focus

our attention first to the instabilities for planar disturbances and then

move to the corresponding behaviors for disturbances with finite wave

numbers.

Instabilities for Planar Disturbances

400Onset Condition of the Fast-Time Instability for Planar Disturban-

ces. The eigenvalue problem describing the fast-time instability for
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K ¼ 0 with general Lewis number can be written from Eq. (4) as

d2w

dn2
�Sw ¼ d2v

dn2
� LSv ¼ De�ðHþcnÞ½2Hv� ðH2 � n2Þw�;

dw
dn

! �
ffiffiffi
S

p
w;

dv
dn

! �
ffiffiffiffiffiffiffi
LS

p
v as n ! �1:

9>>=
>>; ð19Þ

Here we are seeking the condition at which the largest eigenvalue S

405begins to be positive.

Considering a situation immediately after the onset of planar insta-

bility, S is an infinitesimally small positive number. If
ffiffiffi
S

p
is employed

as a small expansion parameter, the eigenvalue problem becomes, at

the leading order,

d2w

dn2
¼ d2v

dn2
¼ De�ðHþcnÞ½2Hv� ðH2 � n2Þw�; ð20Þ

which now has a coupling function for w� v in a linear functional form.

The slope and integration constant for the coupling function is obtained

by imposing the matching condition. In order to achieve matching, it

must be noted that decay of the solution to zero takes place in an

415outer region with thickness of order 1=
ffiffiffi
S

p
in the n coordinate. In terms

of the coordinate f ¼
ffiffiffi
S

p
n, the differential equations in the outer layer

become

d2w

df2
� w ¼ 0;

d2v

df2
� Lv ¼ 0: ð21Þ

The exponentially decaying outer solutions are then found to be

w ¼
wþe�f

w�ef;

(
v ¼

vþe�
ffiffiffi
L

p
f

v�e
ffiffiffi
L

p
f;

(
for

f > 0

f < 0;

(
ð22Þ

where the integral constants w� and v� are yet to be determined. In the

double limit of f ! �0 and n ! �1, matching is achieved to yield

wþ � w� ¼ vþ � v� and wþ þ w� ¼
ffiffiffiffi
L

p
ðvþ þ v�Þ, and a unique coup-

ling function at leading order is found to be

w� v ¼ ð
ffiffiffiffi
L

p
� 1Þ v

þ þ v�

2
: ð23Þ

The value of vþ can be chosen arbitrarily because the problem is linear

and homogeneous. With the choice of vþ ¼ 1, the resulting eigenvalue
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problem, written in terms of v, becomes

d2v

dn2
¼ De�ðHþcnÞ½ð2H�H2 þ n2Þvþ 1þ v�

2
ð1�

ffiffiffiffi
L

p
ÞðH2 � n2Þ�;

v ! 1 as n ! 1; v ! v� as n ! �1:

9>=
>; ð24Þ

430Comparison of this equation with Eqs. (9) and (11) shows that v� ¼ r

and that an eigensolution exists if D0 ¼ ð1�
ffiffiffiffi
L

p
Þð1þ rÞ=2. Although

the eigenfunction v must approach zero as n ! �1, that of Eq. (24)

approaches nonzero constant values, vjn!1 ! 1 and vjn!�1 ! r. The

composite expansion of the inner and exponentially decaying outer

435solutions, however, provides an eigenfunction that is uniformly valid

throughout the entire range of n and that exhibits the correct exponen-

tial decay at infinity. Since this eigensolution exists only near the onset

of instability, the onset condition of fast-time instability for the planar

wave is

D0 ¼ ð1�
ffiffiffiffi
L

p
Þ 1þ r

2
: ð25Þ

If the Lewis number is close to unity, the above onset criterion can

be derived by a formal bifurcation analysis. Since the onset of insta-

bility occurs in the vicinity of the saddle-node bifurcation point, the fol-

lowing expansions are introduced:

L ¼ 1þ e;

a ¼ am þ ea1;

D ¼ Dmð1þ e2D00
m

a21
2
þ � � �Þ;

H ¼ Hm þ ea1H1 þ � � �
v ¼ vm þ ea1v1 þ � � �

9>>>>>>>>>=
>>>>>>>>>;

ð26Þ

Substituting the above expansions into Eq. (24), we find at the leading

order

d2vm
dn2

¼ Dme
�ðHmþcnÞ½ð2Hm �H2

m þ n2Þvm�;

vm ! 1 as n ! 1; vm ! v� as n ! �1: ð27Þ
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Then the leading order solution to vm is simply found to be

vm ¼ dH
da

����
am

¼ Wm ð28Þ

and v� ¼ rm where rm is the value of r at the turning point.

Collecting the terms of OðeÞ,

Lv1 ¼ V2H
2
1 � V0

1þ rm

4a1
ð29Þ

where the linear differential operator L is identical to that in Eq. (15).

455Again applying the solvability condition to the above equation, we find,

hV2; W
3
0i � hV0; W0i

1þ rm

4a1
¼ 0 ð30Þ

where uses have been made of the identities H1 ¼ vm ¼ W0 and

hV2; W
3
0i ¼ �hV0; W0iD00

m. Then we have the onset condition of

� 1þ rm

4a1
¼ D00

m ð31Þ

460Since D0 ¼ D00
mea1, the onset condition can be written in terms of D0 as

D0 ¼ � 1þ rm

4
e ð32Þ

that corresponds to the linear expansion of Eq. (25) for the limit of

L ! 1.

Growth Rate S with L ¼ 1 Near the Saddle-Node Bifurcation

465Point. For L ¼ 1, planar disturbances become unstable as soon as the

turning point is passed. Here we try to obtain the growth rate for planar

disturbances just past the turning point. The corresponding differential

equation is

d2w

dn2
� De�ðHþcnÞ½ð2H�H2 þ n2Þ�w� Sw ¼ Lw� Sw ¼ 0 ð33Þ

470where the linear differential operator is again given as L � dnn � V1ðnÞ.
In the region close to the saddle-node bifurcation point, we employ

d ¼ a� am as a small expansion parameter. Then, the variables are
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expanded as

D ¼ Dmð1þ d2
D00
m

2
þ � � �Þ;

S ¼ d2Rþ � � � ;
w ¼ wm þ dw1 � � � ;
H ¼ Hm þ dWm þ � � � ;

9>>>>>=
>>>>>;

ð34Þ

475where Wm ¼ ð@H=@aÞjD0¼0 and D00
m ¼ ðD�1

m d2D=da2ÞjD0¼0

When these expansions are substituted into Eq. (33), the problem at

order unity becomes

d2wm

dn2
� V1ðnÞwm ¼ Lwm ¼ 0; wm;n ! 0 as n ! �1; ð35Þ

Then, the solution to wm is found to be

wm ¼ Wm ð36Þ

with wm;1 ¼ 1 and wm;�1 ¼ rm.

Collecting the terms of OðdÞ, the differential equation for w1

becomes

Lw1 ¼ V2W
2
m ð37Þ

485where use has been made of the relationship wm ¼ Wm. However, care

must be taken in determining the boundary condition to the above equa-

tion because there is a slowly decaying outer-layer solution. For the

stretched coordinate

f � n=d

490the slowly decaying problem in the outer layer, corresponding to Eq. (33),

becomes

d2wout

df2
� Rwout ¼ 0 ð38Þ

where the subscript out denotes the outer layer. The boundary conditions

to Eq. (38) are found from the matching condition with the leading-order

495inner solution as

woutð1Þ ¼ 0 woutð0þÞ ¼ 1 woutð0�Þ ¼ rm woutð�1Þ ¼ 0 ð39Þ
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Therefore, the solution for wout becomes

wout ¼
expð�R1=2fÞ
rm expðR1=2fÞ;

(
for

f > 0

f < 0;

(
ð40Þ

Matching with this outer decaying solution provides the boundary

500condition to Eq. (37) as

dw1

dn
! �R1=2 n ! 1

dw1

dn
! rmR

1=2 n ! �1
ð41Þ

Now applying the solvability condition,

hLw1; Wmi ¼
dw1

dn
Wm � w1

dWm
dn

� �1
�1

þ hw1;LWmi ¼ hV2; W
3
mi ð42Þ

Since Wm;1 ¼ 1, Wm;�1 ¼ rm, Wn;m;�1 ¼ 0, LWm ¼ 0 and hV2; W
3
0i ¼

505�hV0; W0i D00
m, the above solvability condition becomes simplified as

ð1þ rmÞR1=2 ¼ hV0; WmiD00
m ð43Þ

Further using the identities R ¼ S=d2 and D0 ¼ dD00
m, the growth rate S is

given in terms of D0 as

S ¼ ðdD00
mÞ

2
I 2

ð1þ rmÞ2
¼ I 2D02

ð1þ rmÞ2
ð44Þ

510where the integrated factor I ¼ hV0;Wmi and I ¼ 2:289 for c ¼ 0 and

I ! 1 as c ! 1 (Kim, 1997). For c ¼ 0, the above growth rate is given

by S ¼ 1:310D02.

The numerical results for the growth rate S with K ¼ 0, c ¼ 0:0 and

L ¼ 1 is shown in Figure 4 along with the asymptotic relationship given

515in Eq. (44). In the region of small D0 where variation of S is quadratic

with D0, the asymptotic relationship shows an excellent quantitative

agreement. However, as the value of D0 becomes larger, the variation

tends to be linear with D0 and the quantitative agreement holds no longer.

Planar Instability with General Lewis Numbers. If Lewis numbers

520differ from unity, numerical solution is required to obtain the growth rate

even for planar disturbances. The numerical results for the planar growth
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Figure 4. Dependence of SðK ¼ 0Þ with D0 for L ¼ 1 and c ¼ 0.

Figure 5. Variation of SðK ¼ 0Þ with D0 for various values of L while c is fixed at zero.
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rate S are shown in Figure 5 for various values of the Lewis number L as

a function of D0. Perhaps the most outstanding characteristic in Figure 5

is that the onset of the planar growth is delayed to a larger fuel leakage as

525the Lewis number L decreases. The numerical values of D0 at the onset

condition are compared with Eq. (25). The numerical values are found

to be in an agreement with less than 5% error. Since the decrease to

the zero growth rate is quadratic, it would be somewhat difficult to pin-

point the exact onset condition. Nevertheless the asymptotic prediction

530for the onset of the planar instability is found to be quite accurate even

for general Lewis numbers.

It is also important to understand the physical meaning of the

delayed onset for the planar instability. As the Lewis number decreases

below unity by an order of unity, the minimum Damköhler condition

535given in Eq. (6) no longer serves as the extinction condition. Under this

circumstance, the reduced Damköohler number D has an additional

dependence on the fuel leakage to the Damköhler number, which is a true

ratio of the characteristic flow time to characteristic chemical time. The

additional dependence on the fuel leakage is caused by breaking of the

540coupling between the energy and species conservation. Consequently,

the condition of the minimum Damköhler number does not necessarily

correspond to the minimum of D. In fact, the previous analysis by Kim

and Williams (1997) showed that the quasi-steady extinction condition,

identified by the minimum Damköhler number, occurs for a fuel leakage

545much greater than that at the minimum D condition for L < 1. The quasi-

steady extinction can also be found by the onset of the planar instability

for the entire flame structure including the diffusive-convective structure.

However, the present analysis does not include the transport in that layer.

Nevertheless, the delayed onset of the fast-time planar instability, pre-

550sented in Eq. (25), gives an approximation to the quasi-steady extinction

condition. Even if Eq. (25) does not give an accurate quantitative predic-

tion, it will certainly provide a correct qualitative behavior. In fact, the

region between D0 ¼ 0 and the delayed onset condition is the window

of opportunity, in which the fast-time cellular instability can be realized.

555Its properties are shown in the following.

Instabilities for Disturbances with Finite Wave Lengths

As the reduced Damköhler number D passes the saddle-node bifurcation

point, the instability characters are drastically altered. Figure 6 shows the
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numerical results for the dispersion relation calculated with L ¼ 0:4.

560Even if the growth rate for planar disturbances is fixed at zero for

D0 > 0, the positive growth rates can now be observed for a finite range

of the wave number extending from K ¼ 0, thereby indicating emergence

of the cellular pattern with a relatively large wavelength. In the previous

studies on diffusional-thermal instability for diffusion flames, the cellular

565pattern’s wavelength, estimated from the composite solution of the dis-

persion relationships obtained for the outer convective-diffusive layer

and inner diffusive-reactive layer, was found to be quite satisfactory

(Kim et al., 1997). Even if the current analysis is carried out with the

much shorter inner-zone length scale, the instability is first triggered near

570the zero wavelength region, so that the results would be applicable to the

real cellular patterns found in flames with Lewis numbers much smaller

than unity.

It is also worthwhile to note from Figure 6 that the spectral function

SðK2Þ looks similar to a parabolic function. An approximate dispersion

575relationship can be obtained from the asymptotic analysis presented

below.

In order to find the approximate dispersion relation, the slope of S

with respect to K2 at the origin is first considered. Since S can be

Figure 6. Dispersion relation SðK2Þ for c ¼ 0, L ¼ 0:4, and various values of D0 .
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approximated as a linear function of K2 as K ! 0, the asymptotic

580relation is sought in the form

S ¼ CK2: ð45Þ

Upon substituting this relation into Eq. (4), a set of differential equations

is obtained as

d2w

dn2
�ð1þCÞK2w¼d2v

dn2
�ð1þLCÞK2v¼De�ðHþcnÞ½2Hv�ðH2�n2Þw�;

dw
dn

!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þCÞK2

q
w;

dv
dn

!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þLCÞK2

q
v as n!�1:

9>>=
>>;

ð46Þ

585Hereafter we can follow the same procedure that was demonstrated

in the previous subsection calculating the onset condition of the planar

instability. First
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ CÞK2

p
is treated as a small expansion parameter

and the resulting equation is compared with Eq. (19). Since the factor

ð1þ LCÞ=ð1þ CÞ is corresponding to L in Eq. (19), an asymptotic sol-

590ution at the marginal stability is found to exist if

D0 ¼ 1þ r

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LC

1þ C

r" #
: ð47Þ

By solving for C, the initial slope of S with respect to K2 is found to be

S ¼ ½2D0=ð1þ rÞ�½2� 2D0=ð1þ rÞ�
½1� 2D0=ð1þ rÞ�2 � L

K2; ð48Þ

595The slope is -1 for L ¼ 1 and S ¼ 4D0K2=ð1þ rmÞð1� LÞ for D0 ! 0,

i.e., near the turning point. Moreover, Eq. (48) clearly shows that the

slope becomes positive as soon as D0 becomes positive. Variation of

the slope with D0 is shown in Figure 7. Even if there is some quantitative

discrepancy for positive values of D0, the overall agreement is found to be

600excellent. In particular, the slope diverges as D0 becomes large. This con-

dition can be easily found from the vanishing denominator in Eq. (48) to

be D0 ¼ ð1�
ffiffiffiffi
L

p
Þð1þ rÞ=2 that is in fact identical to the onset condition

for the planar instability. For D0 > ð1�
ffiffiffiffi
L

p
Þð1þ rÞ=2, the linear
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approximation of SðK2Þ in Eq. (45) is no longer valid since SðK ¼ 0Þ
605takes a positive nonzero value.

The spectral behavior for D0 > ð1�
ffiffiffiffi
L

p
Þð1þ rÞ=2 is best shown in

Figure 8, in which the growth rate S is plotted for various values of

L while the values of D0 and c are fixed at 0.2 and 0.0, respectively. With

this parametric condition, the onset Lewis number for the planar insta-

610bility is found to be 0.64. In Figure 8, the spectral curves for L ¼ 0:4 and

0.6 are seen to be anchored at the origin, whereas those for L ¼ 1:0 and

0:8 are seen otherwise. Moreover, one must note that all the spectral

curves for L � 1 return to the same wave number, denoted here by Kc,

when they cross the line of S ¼ 0. This can be clearly seen from the dif-

615ferential equation shown below,

d2w

dn2
� K2

c w ¼ d2v

dn2
� K2

c v ¼ De�ðHþcnÞ½2Hv� ðH2 � n2Þw�;

dw
dn

! �
ffiffiffiffiffiffi
K2
c

q
w;

dv
dn

! �
ffiffiffiffiffiffi
K2
c

q
v; as n ! �1; ð49Þ

Figure 7. The slope of the curve SðK2Þ at K ¼ 0 for various values of L. The solid line

shows the numerical results. The dashed line is plotted according to Eq. (48).
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where no dependence on L is found. The above problem is indeed the

problem identical to Eq. (33). Therefore, K2
c can be written as

K2
c ¼ I 2D02

ð1þ rmÞ2
; ð50Þ

620where one must bear in mind that the above relationship is valid only

near the bifurcation point. In addition, the dispersion relation for

L ¼ 1 in the region of small D0 can be written as

S þ K2 ¼ I 2D02

ð1þ rmÞ2
ð51Þ

625Using Eqs. (44) and (50), the approximate dispersion relation is

expressed as

S ¼ 4D0K2

ð1þ rÞð1� LÞ 1� K2

K2
c

� �
: ð52Þ

with the wave number for the fastest growing mode corresponding to

Kc=
ffiffiffi
2

p
.

Figure 8. Dispersion relation SðK2Þ for c ¼ 0, D0 ¼ 0:2, and various values of L.
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630Based on the above approximate dispersion relation, a nonlinear

evolution equation can be guessed. For the distinguished limit of small

D0, the wave number K is of order D0 and the growth rate S is of order

D03. The nonlinear term which eventually limits the amplitude of the

growing perturbation can be postulated to be the simple cubic term since

635the inner structure of diffusion flame does not possess any propagating

nature. The time coordinate t, transverse coordinate z, and perturbation

w are rescaled by D0�3
, D0�1

and D0�1
, respectively. Then, the nonlinear

evolution equation would take a form of

Ws þWff þWffff þW3 ¼ 0 ð53Þ

640where s, f, and W are the rescaled stretched variables with a set of proper

conversion factors to adjust the coefficient to each term at the above

nonlinear equation.

The above nonlinear equation resembles the Kuramoto-

Sivhashinsky equation for its linear terms and the Landau-Ginzburg

645equation for its nonlinear term. Since the basic nature of nonlinear evol-

ution is more strongly dependent on the nonlinear term, we would antici-

pate that the corresponding nonlinear evolution will be similar to that

of the Rayleigh-Ben�aard instability, which is described by the Landau-

Ginzburg equation. Such nonlinear character is already seen in the

650numerical simulation of cellular patterns in diffusion flames (Lee and

Kim, 2000)Q3 . In their numerical simulation, the initial growth was quite

similar to that of premixed flames as guessed by the similar linear terms;

however, the nonlinear term eventually takes over the final stage of

nonlinear evolution to form a series of stationary stripes as seen in the

655Rayleigh-Ben�aard instability.

Comparison with the Conventional Diffusional-Thermal

Instability

The results of the present fast-time instability exhibit two distinct differ-

ences from the instability characteristics obtained by the linear stability

660analysis employing the NEF limit (Kim, 1997). First, the present fast-

time instability shows that the growth rate is zero at the origin while

the diffusional-thermal instability shows negative growth rate before

reaching the extinction condition. This is perhaps caused by ignoring

the outer convective-diffusive layer where the damping effect for long

665wave disturbances exists. The diffusion effect in the inner layer is not felt
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by the long wave disturbances and the stability analysis using the outer-

layer scaling would be necessary to achieve proper damping effect.

The lack of long wave damping effect appears in the range of Lewis

numberQ4 for the cellular instability too. The present analysis predicts the

670cellular instability for the entire Lewis number range below unity. However,

the diffusional-thermal instability predicts a small range of the Lewis

number at Oð1=bÞ below unity Lewis number, not exhibiting any cellular

instability. In this parametric range of the Lewis number, in view of

Eq. (32), the meaningful D0 is found to be of Oð1=bÞ and correspondingly

675Kc is also found fromEq. (50) to be ofOð1=bÞ that is the same order of mag-

nitude for the wave number in the diffusional-thermal instability. Since the

fast-time instability does not possess the damping effect for such small long

wave, the present analysis does not show any region of the Lewis number

below unity without cellular instability. However, one must keep in mind

680that the Lewis number range without cellular instability is asymptotically

small as b ! 1. Thus the critical Lewis number of L ¼ 1 is indeed correct

from the viewpoint of order unity scaling. In addition, for sufficiently

small Lewis numbers, the present analysis should be quite capable of

predicting the proper instability characters.

685CONCLUDING REMARKS AND FUTURE WORKS

The fast-time instability of diffusion flames is studied as a model problem

for the cellular instability in diffusion flames with Lewis numbers far

from unity by an amount of order unity. Particular attention is focused

on the stability of the inner reactive-diffusive zone structure of near-

690extinction diffusion flames. Consequently, the present study is devoted

to examining the stability of the Li~nn�aan’s diffusion-flame regime with devi-

ation of the Lewis number from unity by an amount of order unity while

employing the fast inner-zone time and length scales.

The stability analysis is carried out asymptotically and numerically to

695exhibit the full spectral nature, particularly in the neighborhood of the

saddle-node bifurcation condition corresponding to the minimum

reduced Damköhler number D that is commonly known as the Li~nn�aan’s

diffusion-flame extinction condition. The present analysis explains that

the minimum D condition does not necessarily correspond to the extinc-

700tion condition, and flames with Lewis numbers less than unity can survive

beyond the minimum D condition. Furthermore, the cellular instability

could begin to emerge upon passing this saddle-node bifurcation
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condition. It is thus predicted that the cellular instability is observable

only for near-extinction diffusion flames with Lewis numbers less than

705unity, as previously predicted by the experimental studies as well as by

the linear stability analysis employing the NEF limit. However, it must

be emphasized again that the present results obtained by calculating the

fast-time instability is valid only for ð1� LÞ ¼ Oð1Þ. Under the fast-time

scaling employed for this distinguished limit, the damping effect arising

710from the convective-diffusive layer does not come into play, so that the

damping of long wave disturbances and the stable region of Lewis number

just below unityQ5 are not predicted in this fast-time instability. However,

one must keep in mind that in the current distinguished limit these effects

lie in the Lewis number’s inner layer located around the unity Lewis num-

715ber, so that the leading-order behavior is not contradictory with the pre-

vious experimental and analytical results.

The present study can be further extended to the different fast-time

instability problems. Immediately, the analysis can be extended to the

case of Lewis number greater unity, where oscillatory instabilities are

720anticipated. For this analysis, care must be taken when the numerical

analysis is carried out because the eigenfunction will oscillate while con-

verging to the boundary condition and the imposition of the boundary

condition could be a tricky matter. Because of this complication, the

Evans function technique is expected to play a key role in calculating

725the eigensolutions. Another interesting distinguished limit corresponds

to the limit, in which the heat loss factor c in Eq. (1) approaches unity,

formally known as the Li~nn�aan’s premixed flame regime. Under this dis-

tinguished limit, the factor ð1� cÞ can be used as an expansion para-

meter to scale the minimum D condition and the reactant leakage a.
730Because the previous analyses predicted that the instability character dif-

fers across the adiabatic condition, the spectral characteristics will be

examined to better understand how the stability of the inner-layer struc-

ture is characterized for near-adiabatic diffusion flames.

APPENDIX: DERIVATION OF THE MINIMUM D CONDITION

735If the parameter c approaches�1 (i.e., the flame is nearly adiabatic), Eq. (1)

exhibits an asymptotic solution, in which m � ð1� jcjÞ=2 is adopted as the

smaller expansion parameter. Since the cases of positive and negative c are
symmetric, here we only consider the case of c ! �1, the case arising for

large oxidizer leakage. This convention is used to formulate the problem
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740in a much more familiar flame configuration in which the premixture is

approaching from the negative infinity. The procedure shown here follows

a previous analysis by Clavin and Li~nn�aan (1984).

To proceed with the analysis, it is convenient to introduce new

variables as

g ¼ 2n� a� ¼ 2n� a

m
u ¼ H� n ðA:1Þ

where an alternative heat-loss parameter m is defined as

m � 1� jcj
2

ðA:2Þ

and the oxygen-leakage parameter aO ¼ a� ¼ að�cÞ is rescaled according

to a� ¼ a=m with a being of order unity. For small values of m, we pose

750the problem that of finding the reduced Damköhler number D that corre-

sponds to a given value of the rescaled fuel-leakage parameter a. Upon sub-

stitution of the new variables in Eq. (A.1) into Eq. (1), the inner equation

becomes

d2u
dg2

¼ D
ae�a

4m
u exp½�ðuþmgÞ� 1þm

a
ðuþ gÞ

h i
u1 ! 0 ðuþ gÞ�1 ! 0 ðA:3Þ

755With the parameter m taken as the small expansion parameter, the solution

is sought in the form

u ¼ u0 þmu1 þ � � �

d ¼ D
ae�a

4m
¼ d0ð1þmd þ � � �Þ

9=
; ðA:4Þ

where u0, u1, as well as d0 and d are assumed to be of order unity.

At the leading order, we find

d2u0

dg2
¼ d0u0 expð�u0Þ

u0 ! 0 as g ! 1 u0 þ g ! 0 as g ! �1 ðA:5Þ

The energy integral of the above equation results in d0 ¼ 1=2, thereby

providing the first approximation to D,

D ¼ 2m

a
expðaÞ ¼ 2

a�
expðma�Þ ðA:6Þ
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The equation for u1 of the expansion in Eq. (A.3) is

d2u1

dg2
� d0ð1�u0Þexpð�u0Þu1 ¼ d0u0 expð�u0Þ d � gþu0 þ g

a

h i
u1 ! 0 as g!�1 ðA:7Þ

The above differential equations can be written in a more standard form

Lðu1Þ ¼ d0 u0 expð�u0Þ d � gþ u0 þ g
a

h i
ðA:8Þ

where the linear operator L is defined to be

L ¼ d2

dg2
� d0ð1� u0Þ expð�u0Þ

770The homogeneous solution uh to the linear operator L is simply found

to be

uh ¼
du0

dg
ðA:9Þ

Then, the solution to Eq. (A.7) exists if its project to uh vanishes.

From the solvability condition, we find an algebraic identityZ 1

�1
d0 u0 expð�u0Þ d � gþ u0 þ g

a

h i du0

dg
dg ¼ 0 ðA:10Þ

The integration yields

�d � mþ m� 2

a
¼ 0 ¼) d ¼ �m� 2� m

a
ðA:11Þ

where use has been made of the integral identitiesZ 1

�1
u0 expð�u0Þ

du0

dg
dg ¼

Z 1

0

u0 expð�u0Þdu0 ¼ �1Z 1

�1
u2
0 expð�u0Þ

du0

dg
dg ¼

Z 1

0

u2
0 expð�u0Þdu0 ¼ �2

780and the constant m is

m ¼
Z 1

�1
u0 expð�u0Þ

du0

dg
gdg ¼ 1:3440

30 J. S. KIM AND V. GUBERNOV



which is obtained by a numerical integration. Consequently, the two-

term expansion for d is found to be

d ¼ D
ae�a

4m
¼ 1

2
ð1� 1:3440m� 0:6560m=aþ oðmÞÞ ðA:12Þ

785Finding the root for the derivative of the logarithm for the above equa-

tion yields the two-expansion for the condition for minimum D such as

a ¼ 1� 0:6560m ¼ 1� ð2� mÞm ðA:13Þ

and the corresponding two-term expansion for dE or DE is

dE ¼ 2emð1� 2mÞ or DE ¼ efð1� jcjÞ � ð1� jcjÞ2g ðA:14Þ

790Of course, the above expression is the first two terms of the so-called

Li~nn�aan’s diffusion-flame extinction criterion. Moreover, from a numerical

calculation, one easily finds that the minimum D for c ¼ 0 is

DEðc ¼ 0Þ ¼ 0:315e ¼ 0:856. Imposing the above condition and the sym-

metricity of DE at c ¼ 0, the four-term expansion of DE becomes

DE ¼ efð1� jcjÞ � ð1� jcjÞ2 þ 0:26ð1� jcjÞ3 þ 0:055ð1� jcjÞ4g ðA:15Þ

The above extinction criterion is found to be in excellent agreement with

the numerical results for DE throughout the entire range of c, i.e.,

�1 < c < 1.
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