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Abstract

In this paper we investigate the properties and linear stability of travelling premixed
combustion waves and the formation of pulsating combustion waves in a model with
two-step chain-branching reaction mechanism. These calculations are undertaken in the
adiabatic limit, in one spatial dimension and for the case of arbitrary Lewis numbers for
fuel and radicals. It is shown that the Lewis number for fuel has a significant effect on
the properties and stability of premixed flames, whereas varying the Lewis number for
the radicals has only qualitative (but not qualitative) effect on the combustion waves.
We demonstrate that when the Lewis number for fuel is less than unity, the flame speed
is unique and is a monotonically decreasing function of the dimensionless activation
energy. Moreover, in this case, the combustion wave is stable and exhibits extinction for
finite values of activation energy as the flame speed decreases to zero. However, for the
fuel Lewis number greater than unity, the flame speed is a C-shaped and double valued
function. The linear stability of the travelling wave solution was determined using the
Evans function method. The slow solution branch is shown to be unstable whereas
the fast solution branch is stable or exhibits the onset of pulsating instabilities via a
Hopf bifurcation. The critical parameter values for the Hopf bifurcation and extinction
are found and the detailed map for the onset of pulsating instabilities is determined.
We show that a Bogdanov-Takens bifurcation is responsible for both the change in the
behaviour of the travelling wave solution near the point of extinction from unique to
double valued type as well as for the onset of pulsating instabilities. We investigate
the properties of the Hopf bifurcation and the emerging pulsating combustion wave
solutions. It is demonstrated that the Hopf bifurcation observed in our present study is
of supercritical type. We show that the pulsating combustion wave propagates with the
average speed smaller than the speed of the travelling combustion wave and at certain
parameter values the pulsating wave exhibits a period doubling bifurcation.

Suggested running head: Pulsating instabilities
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1 Introduction

Premixed combustion waves in models with chain-branching kinetic mechanism have drawn
the interest of researchers for a long period of time [Chao & Law, 1994; Dold, 2007; Gubernov
et al., 2006a; Gubernov et al., 2008a; Gubernov et al., 2008b; Joulin et al., 1985; Liñán, 1971;
Mikolaitis, 1986]. These types of models can describe propagation of combustion waves in
hydrocarbon-air mixtures, which is an issue of practical importance. Hydrocarbon flames
normally produce a pool of radicals through branching reaction steps. These radicals later
recombine to generate heat and products. The chain-branching reaction mechanism cannot
be described by an overall single gross reaction. The simplest models describing flames with
chain-branching kinetics should include at least two reaction steps.

The first two-step chain branching reaction model was introduced by Zeldovich [1948] and
was later analyzed by Liñán [1971] using the activation energy asymptotic (AEA) method.
This model is usually referred to as the Zeldovich-Liñán model. The model comprises a
chain branching reaction A + B → 2B, and chain-breaking (or recombination) reaction
B +B +M → 2P +M , where A is the fuel, B is the radicals, P is the product, and M is a
third body. It is assumed that the first reaction has large activation energy and is isothermic,
whereas the recombination reaction has negligible activation energy and is exothermic. The
isothermic first reaction condition was subsequently dropped in Joulin et al. [1985].

In Liñán [1971] it was shown that there are three flame regimes in the Zeldovich-Liñán
model: fast, intermediate and slow recombination regimes. Depending upon the particular
flame regime various asymptotic expansions have been introduced in different flame zones.
The resulting asymptotic differential Eqs. are then solved either analytically or numerically
depending on the complexity of the set of Eqs. obtained as a result of the asymptotic
analysis. The model considered in Liñán [1971] and Joulin et al. [1985] does not include
heat loss and the response curves obtained in these papers are single valued functions.
In Chao & Law [1994] the Zeldovich-Liñán model with heat loss to the surroundings was
considered using the AEA method. It was demonstrated that the flame speed as a function
of other parameters of the problem is a C-shaped function which exhibits turning point type
extinction condition similar to that predicted by the one-step nonadiabatic model [Joulin &
Clavin, 1979].

In a number of papers [Seshardi & Peters, 1983; Mikolaitis, 1986; Tam, 1988b; Tam,
1988a], the influence of stretch on premixed flame for the Zeldovich-Liñán model was studied.
In these papers the authors considered several distinguished limits in order to examine the
problem in terms of AEA either analytically or semi-analytically. As a result it was found
that the flame response to stretching depended upon the particular flame regime i.e. fast,
intermediate or slow recombination.

The stability analysis of flames in the Zeldovich-Liñán model has to date not been per-
formed. It appears that the stability of the combustion waves cannot be treated effectively
by using the AEA method for this model. The complexity of the stability analysis increases
significantly as the number of reactions involved in the kinetic scheme increases.

The other important property of the Zeldovich-Liñán model is the nonlinear dependence
of the reaction terms on the concentration of reactants. In order to overcome this difficulty,
a simplified version of the Zeldovich-Liñán model was introduced recently by Dold [2007]. In
this model the order of the recombination reaction was reduced by one so that the resulting
kinetic scheme is written as A+B → 2B, B+M → P+M . The reduction of the order of the
chain-breaking reaction makes the dependence of the reaction terms on the concentration
of radicals in the governing Eqs. linear, which allows the problem to be treated by using
the AEA method. The speed of the combustion wave was determined as a function of the
parameters of the problem and was shown to be C-shaped in the nonadiabatic case. For the
adiabatic case the expression derived in Dold [2007] suggests a unique flame speed. For the
case of the reactant Lewis number less than one, the analysis in Dold [2007] predicts that
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the wave can lose stability due to the emergence of cellular instabilities.
In our earlier paper [Gubernov et al., 2006a] we have investigated the properties of the

model introduced in Dold [2007] in the adiabatic case and in the limit of equal diffusiv-
ity of the reactant, the radical and heat. In contrast to Dold [2007] the activation energy
in Gubernov et al. [2006a] is taken to be O(1) (not an infinite number). As is noted in
Mikolaitis [1986] this is a reasonable assumption for real flames like the hydrogen oxidation
flame. We also used a different nondimensionalization, which enabled us to make more
convenient comparisons between the two- and one-step models. In Gubernov et al. [2006a]
the properties of the travelling wave solutions were investigated in detail by means of nu-
merical simulation. It was demonstrated that the speed of a combustion wave as a function
of parameters is single valued. We have found that for finite activation energy there is a
residual amount of reactant left behind the travelling combustion wave which is not used in
the reaction [Gubernov et al., 2004]. This makes the problem similar to the nonadiabatic
one-step premixed flames. The other characteristic of the model considered in Gubernov
et al. [2006a] which makes the similarity between the adiabatic two-step reaction and the
nonadiabatic one-step system even stronger is that for certain parameter values the com-
bustion wave exhibits extinction. However, for the former case the extinction occurs at zero
flame speed. This mainly distinguishes the one- and two-step adiabatic models. The route
to extinction in this model is investigated in detail in Gubernov et al. [2008a]. It is shown
that the flame speed as a function of activation energy approaches zero in a linear fashion.
The stability of the travelling combustion waves is also investigated. We have shown that
for the equidiffusional case the flame is stable for a wide parameter range considered in the
paper which correlates with the results in Dold [2007].

The equidiffusional approximation used in Gubernov et al. [2006a] and Gubernov et al.
[2008a] makes the analysis of the problem more convenient. However, this distinguished
limit reduces the applicability of the results to real flames with chain-branching reaction
mechanism, which can be characterized by various values of Lewis numbers for both rad-
icals, LB , and fuel, LA. This is especially true for the stability analysis, since the flame
stability is expected to depend substantially on these parameters [Dold, 2007]. In our recent
paper [Gubernov et al., 2008b] we investigate the effect of the Lewis number variation on
both properties and the stability of combustion waves in this model. It is shown that the
Lewis number for fuel has a significant effect on the properties and stability of premixed
flames, whereas variation of the Lewis number for the radicals has only quantitative (but not
qualitative) effect on the combustion waves. We demonstrate that, when the Lewis number
for fuel is less than unity, the flame speed is a unique, monotonically decreasing function of
the dimensionless activation energy. The combustion wave is stable and exhibits extinction
for finite values of activation energy as the flame speed decreases to zero. For the fuel Lewis
number greater than unity the flame speed is a C-shaped and double-valued function. The
slow solution branch is shown to be unstable whereas the fast solution branch is stable or
exhibits the onset of pulsating instabilities via the Hopf bifurcation.

In Gubernov et al. [2008b] only several characteristic values of LA and LB were considered
which limits the understanding of the stability of the combustion waves. The aim here is to
obtain a detailed map of the onset of pulsating instabilities in this reaction scheme. This
includes the analysis of the various bifurcations and scenarios leading to instabilities. In
particular we study the properties of the Hopf bifurcation leading to the onset of pulsations
in detail and investigate the pulsating solutions emerging as a result of this bifurcation. We
also investigate the existence of the Bogdanov-Takens bifurcation which is shown to play a
significant role in the emergence of oscillations in both premixed [Gubernov et al., 2004] and
diffusion flames [Gubernov & Kim, 2006] with single-step kinetics. The paper is organized as
follows. In the next Sec. the governing Eqs. and the boundary conditions are introduced. In
Sec. 3 the properties of the travelling combustion waves are investigated in detail. Section 4
is devoted to the linear stability analysis of the travelling combustion waves. The pulsating
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combustion wave solutions and the properties of the Hopf bifurcation are studied in Sec. 5.
In the final Sec. a summary of the results and concluding remarks are presented.

2 Model

We consider an adiabatic model for premixed flame propagating in one spatial dimension
that includes two steps: autocatalytic chain branching A + B → 2B and recombination
B+M → C+M . Here A is the fuel, B is radicals, C is the product, and M is a third body.
It is assumed that all the heat of the reaction is released during the recombination stage
and the chain branching stage does not produce or consume any heat. Following Gubernov
et al. [2008a], the governing Eqs. for the nondimensional temperature, u, concentration of
fuel, v, and radicals, w, can be written in nondimensional form as

ut = uxx + rw,

vt = L−1
A vxx − βvwe−1/u,

wt = L−1
B wxx + βvwe−1/u − rβw,

(1)

where x and t are the dimensionless spatial coordinate and time respectively, LA and LB

are the Lewis numbers for fuel and radicals respectively, β is the dimensionless activation
energy of the chain-branching step (which corresponds to the definition for the one-step
model [Gubernov et al., 2004]), r is the ratio of the characteristic time of the recombination
and branching steps (which cannot be reproduced in one-step approximations of the flame
kinetics).

Equations (1) are considered subject to the boundary conditions

u = 0, v = 1, w = 0 for x→ ∞,

ux = 0, vx = 0, w = 0 for x→ −∞.
(2)

On the right boundary we have cold (u = 0) and unburned state (v = 1), where the fuel has
not been consumed yet and no radicals have been produced (w = 0). The nondimension-
alized ambient temperature is taken to be equal to zero. On the left boundary (x → −∞)
neither the temperature of the mixture nor the concentration of fuel can be specified. We
only require that there is no reaction occurring so the solution reaches a steady state of (1).
Therefore the derivatives of u, v are set to zero and w = 0 for x→ −∞.

The solution to the problem (1) and (2) is sought in the form of a travelling wave
u(x, t) = u(ξ), v(x, t) = v(ξ), and w(x, t) = w(ξ), where a coordinate in the moving frame,
ξ = x− ct, is introduced and c is the speed of the travelling wave. Substituting the solution
of this form into the governing Eqs. we obtain

uξξ + cuξ + rw = 0,

L−1
A vξξ + cvξ − βvwe−1/u = 0,

L−1
B wξξ + cwξ + βvwe−1/u − rβw = 0.

(3)

The boundary conditions (2) can be modified if we multiply the first Eq. in (3) by β, add it
to the second and third Eqs. in (3) and integrate it once over ξ from minus to plus infinity.
This yields a condition: limξ→−∞ S = limξ→+∞ S, where S = βu+ v + w. Combining this
condition with (2) results in

u = 0, v = 1, w = 0 for ξ → ∞,

u = β−1(1 − σ), v = σ, w = 0 for ξ → −∞,
(4)
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where σ denotes the residual amount of fuel left behind the wave and is unknown until a
solution is obtained.

As shown in [Gubernov et al., 2008a] in order for the travelling combustion wave solution
to (1) to exist the following condition has to be satisfied

r > σ exp
( −β

1 − σ

)
. (5)

The inequity (5) implies that in the product region the reaction is completed and the branch-
ing term is less than the recombination term in the third Eq. of (1). The condition (5) defines
the region in the parameter space where the autowaves exist.

3 Properties of the Travelling Combustion waves

The properties of the travelling combustion waves were investigated numerically by solving
the system of Eqs. (3) subject to boundary conditions (4). We used a standard shooting
algorithm with a fourth order Runge-Kutta integration scheme in the first instance and
then the results were corrected by employing the relaxation algorithm. The investigation of
the travelling combustion waves in Gubernov et al. [2008b] by using the methods described
above revealed that the Lewis number for fuel LA has a substantial effect on the properties
of the premixed flames whereas the variation of LB effects only quantitative behavior of the
combustion waves. The results obtained in Gubernov et al. [2008b] and in the course of our
current work are summarized in Fig. 1 where the flame speed is plotted as a function of β for
various values of LA and LB as shown in the Fig. captions and for r = 0.001. Throughout
this paper parameter r is fixed at this value (unless stated otherwise).

For the case of Lewis number for fuel less than unity (LA < 1) the dependence c(β) is
a monotonically decaying function exhibiting extinction as the flame speed reaches zero at
a certain value of the activation energy, βe, corresponding to extinction. The flame speed
decreases to zero according to a quadratic law i.e. c ∼ (β − βe)2 as the dimensionless
activation energy approaches the extinction value βe. In Fig. 1 the dependence of c(β) is
plotted for LA = 0.1 and LB = 1.0 and 10.0. The individual curves plotted for LB = 1.0, and
10.0 possess the same qualitative behaviour although the values of the flame speed change
with variation in LB . The dependence of c(β) is a monotonically decaying function exhibiting
extinction for β around 3.2. We have also found (not shown here) that the dependence of σ
on β is a single valued function for LA < 1. For parameter values sufficiently away from the
extinction condition the residual amount of fuel can be neglected. Almost all fuel is converted
to radicals and no fuel leakage is observed (σ → 0). As we increase β and approach the
extinction point, the value of σ becomes significant. At the extinction condition the residual
amount of fuel reaches its maximum value corresponding to the extinction condition defined
by (5).

For the case LA = 1 the structure of the travelling solution branch in the parameter
space changes. In Fig. 1 the dependence of the flame speed, c, on β is plotted for LB = 1.0,
and 10.0. Although c(β) is still a monotonic function approaching zero as β reaches some
critical value βe = 4.2... corresponding to extinction, the behaviour of this function is now
different near the point of extinction. Namely, the flame speed decreases to zero according
to a linear law: c is proportional to (β − βe) for β close to βe, in contrast to the quadratic
dependence for LA < 1. Similar results were obtained earlier in Gubernov et al. [2008a]
analytically. Qualitatively the dependence of c(β) is the same for the Lewis number for
radicals varying over two orders of magnitude from 0.1 to 10.0 as shown in Gubernov et al.
[2008b].

The dependence of the flame speed, c, on β becomes C-shaped for LA > 1 i.e. c(β) is a
double-valued function. There are either two solutions travelling with different flame speed
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Figure 1: The dependence of the flame speed, c, on dimensionless activation energy, β,
for LA = 0.1, 1.0, 10.0, and two values of the Lewis number for radicals, LB = 1.0 and
LB = 10.0. Solid lines represent the stable solutions, whereas unstable solutions are plotted
with dotted lines.
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or the solutions cease to exist due to the extinction when the fast solution branch meets
the slow solution branch at the turning point of the c(β) curve. We denote the coordinates
of the turning point with subscript ‘tp’, i.e. βtp and ctp = c(βtp). The dependence of the
flame speed, c, on dimensionless activation energy, β, is shown in Fig. 1 for LA = 10 and
various values of LB . In Fig. 1 the stable solution branches are plotted with the solid
line and the dotted line represents the unstable branches (the stability analysis is described
in detail in the next Sec.). For small values of β the fast solution branch is stable and
is characterized by a negligibly small residual amount of fuel. As the activation energy is
increased, the residual amount of fuel grows and it becomes significant as the turning point
of c(β) is approached. The slow solution branch is always unstable. It is characterized by a
considerable fuel leakage. As we move along the slow solution branch by decreasing β from
the turning point value, the flame speed decreases and at certain value βe it becomes equal
to zero. The behaviour of c(β) follows a quadratic law i.e. c ∼ (β−βe)2 as the dimensionless
activation energy approaches the extinction value βe. As shown in Gubernov et al. [2008b],
variation of LB over two orders of magnitude does not effect the qualitative behavior of the
solution branches in the parameter space.

4 Stability of the Travelling Combustion Waves

In order to investigate the stability of combustion waves with respect to pulsating pertur-
bations we linearize the governing Eqs. (1) near the travelling wave solution, that is we
seek the solution of the form u(ξ, t) = U(ξ) + εφ(ξ) exp(λt), v(ξ, t) = V (ξ) + εψ(ξ) exp(λt),
and w(ξ, t) = W (ξ) + εχ(ξ) exp(λt), where [U(ξ), V (ξ), W (ξ)] represent the travelling com-
bustion wave and terms proportional to the small parameter ε are the linear perturbation
terms. Substituting this expansion into (1), leaving terms proportional to the first order of
ε only, and introducing the vector function with components v(ξ) = [φ, ψ, χ, φξ, ψξ, χξ]

T

we obtain
vξ = Â(ξ, λ)v, (6)

where

Â =
[

0 Î

Ĥ(ξ, λ) Ĉ

]
, (7)

Ĥ =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ 0 −r

βLA
VW

U2
e−1/U βLAWe−1/U + LAλ βLAV e

−1/U

−βLB
VW

U2
e−1/U −βLBWe−1/U −LB(βV e−1/U − λ− βr)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8)

Ĉ =

⎡
⎣ −c 0 0

0 −cLA 0
0 0 −cLB

⎤
⎦ , Î =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (9)

We will call a set, Σ, of all λ values for which there exist a solution to (6) bounded for both
ξ → ±∞ a spectrum of linear perturbations. In the general case Σ is a set on a complex
plane and it consists of the essential spectrum Σess and the discrete spectrum Σdisc. If there
exists at least one λ ∈ Σ such that Reλ > 0 then the travelling wave solution is linearly
unstable, otherwise, if for all λ ∈ Σ the real parts are not positive, then the travelling
wave solution is linearly stable. Therefore in order to investigate the linear stability of the
travelling wave solutions to (1), the spectrum Σ of the problem (6) has to be found. It
can be shown (see Sandstede [2002] for details) that the essential spectrum is comprised
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Figure 2: Bifurcation diagram for LA = 10.0 and LB = 1.0. The dependence of c(β) is
plotted in Fig. (a), where the solid line represents the stable and the dashed line unstable
solutions. The real and imaginary parts of λ as functions of β are given in Figs. (b) and (c)
respectively. In Fig. (d) the location of the points of the discrete spectrum as parameter β
is varied in a complex plane is shown. In Figs. (a) - (c) βh and βtp represent the values of
the parameter β when the Hopf bifurcation and fold bifurcation occur respectively and β+

denotes the value of the parameter β when the points on the discrete spectra becomes real.

of parabolic curves on a complex plane with Reλ ≤ 0. This implies that it is the discrete
spectrum of the problem (6) that is responsible for the emergence of instabilities.

The linear stability problem is solved by finding the location of the discrete spectrum on
a complex plane using the Evans function method [Evans, 1972] implemented with the use
of a compound matrix approach [Gubernov et al., 2004]. However, in order to carry out such
an investigation, the methods outlined in Gubernov et al. [2004] have to be generalized for a
model with a two-step reaction mechanism. From the point of view of the compound matrix
method the difference between the one-step model considered in Gubernov et al. [2004]
and the current model with a two-step reaction mechanism is in the increased number of
governing Eqs.. This substantially changes the topology of the linear stability problem in
the compound matrix method formulation for the case of the two-step model and makes the
methods described in Gubernov et al. [2004] not applicable to the case considered here. In
order to overcome this difficulty we use an exterior algebra formulation of the Evans function
method and generalize our approach to make it applicable to models with arbitrary number
of governing Eqs. as described in Gubernov et al. [2006b].

The application of the Evans function method to the stability analysis allows one to
obtain a location of the discrete spectrum on the complex plane and thus gives detailed
information about pulsating instabilities emerging as a result of stability loss of the travelling
combustion wave. Our analysis shows that for LA ≤ 1 and LB varying over several orders
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of magnitude from 0.1 to 10.0 there are no points of the discrete spectrum located in the
right half plane (i.e. Reλ > 0) and therefore the travelling wave solution is always stable
with respect to pulsating instabilities. For the case LA > 1 the travelling combustion wave
is either stable or exhibits the onset of pulsations as a result of the Hopf bifurcation. This
situation is illustrated in Fig. 2(a), where the dependence of the flame speed, c, on the
dimensionless activation energy, β, is plotted for LA = 10.0 and LB = 1.0. The stable
travelling wave solutions are represented by the solid line and the unstable solutions are
plotted with the dashed line. The fast solution branch is found to be stable for small
values of the activation energy. As β is increased towards the turning point a pair of the
complex conjugate points of the discrete spectrum moves from the left (Reλ < 0) to the
right (Reλ > 0) half of the complex plane crossing the imaginary axis with Imλ �= 0 at
a certain value β = βh. This is illustrated with the dotted line marked as ’βh’ in Figs. 2
(b), (c), and (d), where the dependencies of Reλ(β), Imλ(β), and Imλ(Reλ) are plotted
respectively. The critical value βh ≈ 4.120 corresponds to the point of stability loss of the
travelling wave solutions due to the emergence of the pulsating instabilities via the Hopf
bifurcation. This is shown in Fig. 2 (b) as the graph Reλ(β) crosses the line Reλ = 0
plotted with the horizontal dotted line. Further increase of β above the critical value βh

results in the increase of the real part of the pair of the points of the discrete spectrum as
seen in Fig. 2 (b). At the same time the imaginary part of λ ∈ Σdisc decreases as shown
in Fig. 2 (c) and at certain value of β+ ≈ 4.429 the points of the discrete spectrum merge
together and become purely real as is clearly seen in Figs. 2 (c) and (d). This event marks
the change of instability nature from pulsating to uniform. As β approaches the turning
point βtp ≈ 4.6648 along the fast solution branch (c > ctp ≈ 8.585 · 10−3), one of the points
of the discrete spectrum moves towards the origin and merges with it at β = βtp while the
other one remains in the right half plane giving rise to uniform instability of the travelling
combustion wave. The former point is shown in Fig. 2 (b) with the curve ending at the
point (Reλ = 0, βtp) and the latter corresponds to a loop in the dependence Reλ(β) which
is tangent to the vertical dotted line β = βtp. As we pass the turning point of the c(β) graph
moving from the fast to the slow solution branch, one of the points of Σdisc stays in the
positive real axis, thus, the slow solution branch is unstable due to the uniform instability.
The same scenario has been observed for LB ranging from 0.1 to 10.0. It should be noted
that similar scenario is reported in Gubernov et al. [2004] (see Fig. 7) and Gubernov & Kim
[2006] for the case of one-step premixed and diffusion flames respectively.

Next step we investigate the stability of the travelling wave solutions with respect to
pulsating instabilities for various values of the Lewis number for fuel, LA, in order to obtain
a detailed instability map and determine the character of bifurcations responsible for the
onset of the pulsating instabilities. We fix the value of LB to be equal to unity and vary
LA from 0.1 to 10.0. For each value of LA the stability of the travelling combustion wave
is investigated for a broad range of β values by finding the location of Σdisc in the complex
plane. The results of this study are summarized in Fig. 3 where the critical parameter
values for the extinction and Hopf bifurcation are depicted with the solid and the dotted
lines respectively on the LA versus β plane for LB = 1. The Lewis number for fuel is plotted
in decimal logarithmic scale in order to map the range of its variation uniformly on the
graph. The term extinction here needs further clarification. As the control parameters of
the model (i.e. LA, LB , β) are varied, the travelling wave solution either ceases to exist
as the flame speed decreases to zero for the case LA ≤ 1 or when the turning point of the
c(β) curve is reached for the case LA > 1. Therefore, the extinction of the travelling wave
solution occurs either as c = 0 for LA < 1 or when [dc/dβ]−1 = 0 for LA > 1. In Fig. 3
the region below the solid line, marked as ‘extinction’ curve, corresponds to the parameter
values where the travelling wave solutions do not exist. Therefore this region is marked
with the ‘no solutions’ label. The parameter values above the extinction curve correspond
to either the region where a single travelling wave exist LA ≤ 1 or to the region where two
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Figure 3: Stability diagram on the (β, log10 LA), parameter plane for LB = 1. The solid and
dotted lines represent the loci of critical parameter values for extinction and Hopf bifurcation
respectively. Sign ‘+’ denotes the location of β and LA chosen for the analysis presented in
Fig. 5.
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travelling wave solution branches may coexist LA > 1. These two regions of parameters
are marked with ‘single solution’ and ‘two solution’ labels and are separated by the dashed
line log10 LA = 0 in Fig. 3. The stability analysis shows that for all parameters from the
region below the log10 LA = 0 curve and above the extinction curve (single solution region
in Fig. 3), the corresponding travelling wave solutions are stable (see Fig. 1). In contrast
to this, in the parameter region where two solution branches may coexist the slow solution
branch is always unstable and the fast solution branch is either stable or exhibits the onset
of pulsating instabilities via the Hopf bifurcation. The dotted line corresponds to the Hopf
bifurcation locus. Between the dotted (Hopf) and the solid line (extinction) lies a region
where the fast travelling solution branch is unstable. Once the dotted line is crossed in the
parameter space, for example, by increasing β for fixed LA the fast branch of travelling wave
solutions becomes unstable with respect to pulsating instabilities. Further increasing β and
moving towards the extinction curve, the instability changes from pulsating to uniform as
described above for the case LA = 10.0.

Marked with a star on Fig. 3 is a point where the Hopf bifurcation curve meets the ex-
tinction curve. This point is a bifurcation of codimension two and is known as the Bogdanov-
Takens bifurcation. It is a point from which the Hopf bifurcation locus in the parameter
space originates and therefore this bifurcation is directly responsible for the onset of pulsa-
tions in the model. It is surprising that the Bogdanov-Takens bifurcation point is located
on the line LA = 1. Previously, we have shown the existence of this bifurcation for the case
of both one-step premixed [Gubernov et al., 2004] and diffusion [Gubernov & Kim, 2006]
flames. In these investigations the Bogdanov-Takens bifurcation is demonstrated to play an
important role in the onset of pulsating instabilities. However, in the case of the one-step
reaction the Bogdanov-Takens bifurcation point is found for Lewis numbers greater than
one. This can have an important implication on the multidimensional stability which we
will discuss later.

The stability diagram in the (β, LA) parameter plane for various values of LB = 0.2, 1.0,
and 5.0 is plotted in Fig. 4. As is seen from Fig. 4 the variation of LB does not effect the
qualitative behaviour of the stability diagram, although the critical parameter values for the
Hopf bifurcation substantially shifts towards the larger values of β with the increase in LB .
The extinction curve is only slightly influenced by variations in LB , namely, the extinction
curve rotates clockwise around the Bogdanov-Takens bifurcation point with the increase in
LB . It should be noted that the location of the Bogdanov-Takens bifurcation is not effected
by variation in LB .

5 Pulsating Solutions

We investigate the properties of pulsating combustion wave solutions emerging as a result of
the Hopf bifurcation when the parameters reach critical values. The governing Eqs. (1) are
solved in a sufficiently large coordinate domain with the boundary conditions (2) imposed
at the edge points of the space grid. For our numerical algorithm we use the method of
splitting with respect to physical processes. Initially we solve the set of ordinary differential
Eqs. which describe the temperature and the species concentration variations due to the
branching and recombination reactions by using the fourth order Runge-Kutta algorithm. As
a next step, Eqs. of mass transfer for fuel and radicals are solved with the Crank-Nicholson
method of the second order approximation in space and time. The initial conditions for the
numerical scheme are taken in a form of the travelling wave solution (or autowave) of (3).

The results of our investigation are presented in Fig. 5, where the behaviour of pulsating
combustion wave is illustrated for LA = 3.0, LB = 1.0, and β = 4.08. The value of β is
taken above the critical value of dimensionless activation energy for the Hopf bifurcation,
βh = 4.0703... This choice of parameters is shown in Fig. 3 with a thick cross located just
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Figure 4: The Hopf bifurcation and extinction loci on the (β, LA) parameter plane for
LB = 1.0, 0.2, and 5.0 with the regions defined as in Fig. 3.
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Figure 5: Pulsating combustion wave for LA = 3, LB = 1, and β = 4.08. Plotted in Figs.
(a), (b), and (c) are temperature u(ξ), concentration of fuel, v(ξ), and concentration of
radicals w(ξ) profiles respectively. Solution profiles are sampled at t1 = 0, t2 = 8750, and
t3 = 17500 and are marked as 1, 2, and 3 respectively. The dependencies of instant values
of wmax and ξmax on time are presented in Figs. (d) and (e) respectively. In Fig. (f) the
maximum value of the radicals concentration, wmax, is plotted againts the coordinate of the
maximum, ξmax.
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beyond the Hopf curve (dotted line). The initial profile taken in the form of the travelling
combustion wave is unstable and exhibits pulsating instabilities. These instabilities distort
the solutions of (1) at the initial stages of the profile evolution in time. There are transient
peaks in the temperature distribution in coordinate space and oscillations of the shape and
maximum value of the radical concentration profile, wmax. The fuel concentration profile is
mainly effected in the variation of the front curvature although some small oscillations of the
fuel concentration are observed in the product region. The value of wmax and the location
of the maximum of the radical concentration ξmax are convenient parameters to describe the
pulsating nature of the solution. Here ξ = x− cdriftt is a coordinate in the frame travelling
with the speed cdrift which is a mean value of the flame propagation cdrift = lim

t→∞xmax/t,
where xmax is a coordinate of the maximum of the radical concentration in the laboratory
coordinate frame.

As the pulsating instabilities evolve, the value of wmax and ξmax oscillate with an am-
plitude which grows exponentially with time. This type of behaviour is also reported in
Gubernov et al. [2008b], where it is demonstrated that the frequency of these oscillations is
given by the imaginary part Imλ and the rate of exponential growth is determined by the
real part, Reλ, of the pair of the points of the discrete spectrum, Σdisc, responsible for the
instability onset. However, at times of the order of (Reλ)−1, the amplitudes of oscillations,
wmax(t) and ξmax(t), reach saturation and stabilize at certain values. The behaviour of
u(x, t), v(x, t), and w(x, t) profiles become periodic in time and the wave speed, defined
as dxmax/dt, averaged over a period of pulsations is equal to cdrift, and so the pulsating
combustion wave is formed.

In Fig. 5 (a), (b), and (c) the temperature, the concentration of fuel and the radicals
profiles of the pulsating combustion wave are plotted respectively for three moments of time
t1 = 0, t2 = 8750, and t3 = 17500. Since the solution is periodic, time is measured from
0 to T , where T ≈ 30492.5 is the period of oscillations. The coordinate ξ = x − cdriftt is
a coordinate in a travelling frame moving with speed cdrfit. In Fig. 5 (a) it is seen that
the temperature profile, as a function of ξ, changes its behaviour over a period of time from
monotonic for t = t1 to a solution with a single local maximum as shown with curves 2 and
3. For t = t2 the peak of temperature is relatively sharp, and for t = t3 > t2 it fades and the
temperature profile gradually returns to a monotonic behaviour with respect to coordinate
ξ. Also be noted that the instant coordinate of the maximum slope of u(ξ) oscillates in time
near ξ = 0. The fuel concentration profile v(ξ, t) is plotted in Fig. 5 (b) for three successive
moments of time. It is seen that the maximum slope of v(ξ) for fixed t changes its value
with time. Also the coordinate of the maximum slope exhibits oscillations over a period of
time near the origin ξ = 0 in the travelling coordinate frame. It should be noted that since
there is a residual amount of fuel left behind the combustion wave in the product region,
some small oscillations of the fuel concentration leftovers are observed. The most remarkable
soliton type dynamics is demonstrated by the radical concentration profile w(ξ, t), which
is depicted in Fig. 5 (c). As seen from this Fig. the radical concentration as a function of
ξ remains a bell-shaped function of the soliton type for all moments of time. However, the
maximum of w(ξ) and its location are periodic functions of time. This is demonstrated in
Figs. 5 (d) and (e), where the time dependencies of wmax and ξmax are shown respectively.
The distribution of radicals exhibits periodic oscillations near the average wave position
ξ = 0. In Fig. 5 (f) wmax(t) is plotted versus ξmax(t). It is seen that a limit cycle is formed
in the (ξmax, wmax) plane.

To summarize, the pulsating combustion wave is travelling with an average speed, cdrift,
however u, v, and w proflies exhibit periodic pulsations in time in such a way that the
combustion wave accelerates and decelerates at certain moments of time and the flame
propagates in a “stop-and-go” manner i.e. the wave accelerates, jumps to a new position,
then decelerates and stops and so on. Similarly to that described above, the formation of
pulsating waves after crossing the Hopf bifurcation curve in the parameter space has been
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Figure 6: Hopf bifurcation and pulsating solution characteristics for LA = 3 and LB = 1.
The dependence of the Δwmax amplitude of wmax oscillations on β is plotted in Fig. (a).
In Fig. (b) the speed of the travelling combustion wave is plotted with the solid line for
stable solution and with the dashed line for unstable solutions. The average drift speed
of pulsating wave is plotted with the circles connected by the solid line. In Fig. (c) the
frequency of oscillations, ω, is shown as a function of β with a solid line and the dashed
line represents the imaginary part, Imλ, of the points of the discrete spectrum. In Fig. (d)
wmax(t) is plotted against ξmax(t) for various values of β (as described in the text).

observed for LA ranging from 1 to 5. In Gubernov et al. [2008b] it is reported that no
pulsating wave solutions are determined for LA = 10.0. This implies that there could be
a certain bifurcation for 5 < LA < 10 that changes the nature of the onset of pulsating
instability. However, this issue has to be further clarified and lies beyond the scope of the
current investigation.

In order to clarify the nature of the Hopf bifurcation, the properties of the pulsating
solutions emerging from the travelling combustion wave have been investigated. The results
of this studies are presented in Fig. 6, where all calculations have been undertaken for
LA = 3.0 and LB = 1.0. Parameter β is varied from the values just above the critical value
for the Hopf bifurcation βh = 4.0703... to β = 4.08 and the pulsating combustion wave is
found by solving (1) for each β. In Figs. (a), (b), and (c) the circles correspond to numerical
results, which are connected with the solid line. In Fig. 6 (a) the magnitude of oscillations of
the maximum value of the radicals concentration, Δwmax = max{wmax(t)}−min{wmax(t)}
over one period 0 < t < T , is plotted against β. The dependence of Δwmax(β) shows root
type behaviour typical for a periodic solution branch emanating from a Hopf bifurcation
point. The Hopf bifurcation above is of supercritical type. In Fig. 6 (b) the speed of
travelling combustion wave is plotted with the dashed line and the average drift speed is
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given by the circles connected with the solid line. As seen in Fig. 6 (b) the pulsating wave on
average travels slower than the travelling wave and the difference c−cdrift is growing almost
linearly with increasing β. The frequency of oscillations of pulsating wave is presented in
Fig. (c) with the circles connected with the solid line. It is also compared with the imaginary
part of the pair of the points of the discrete spectrum responsible for the onset of instabilities
for the travelling combustion wave which is plotted with the dashed line. It is seen that the
frequency as well as flame speed is smaller for the pulsating than for the travelling wave.
Finally, in Fig. 6 (d) the maximum value of the radicals concentration, wmax(t), is plotted
against ξmax(t) for several values of β: curve 1 corresponds to β = 4.08, curve 2 to β = 4.075,
curve 3 to β = 4.072, curve 4 to β = 4.07075, and curve 5 to β = 4.0705. It is seen that on
the wmax(t) vs. ξmax(t) plane limit cycles are formed. The amplitude of oscillations grows
as β increases. For β = 4.0705, just above the critical value for the Hopf bifurcation, the
limit cycle has an almost elliptical shape and the wmax(t) and ξmax(t) oscillations are close
to harmonic. As β is increased the shape of the limit cycle deforms and becomes triangular
for β = 4.08 indicating that wmax(t) and ξmax(t) contain higher harmonics in a Fourier
series expansion.

It should be noted that similar to the one-step models a period doubling bifurcation
occurs with further increase of β. We have found both period two and period four solutions
for the current model with chain branching reaction mechanism. These results are illustrated
in Fig. 7, where wmax(t) is given in (a, c) and wmax(ξmax) is plotted in (b, d). the of period
two solution is presented in Fig. 7 (a) and (b) for β = 4.0823. The limit cycle for β = 4.08
shown in Fig. 6 (d) consisted of a single closed curve, which splits into two loops for
β = 4.0823 indicating the appearance of the period two solution. As β is further increased,
a second period doubling bifurcation occurs and a solution of period four emerges. This
period-four solution is illustrated in Figs. 7 (c, d) for β = 4.0827. The limit cycle for this
case consists of four loops. We can expect that there exists a sequence of period doubling
bifurcations leading chaotic solutions before extinction. A verification of this hypothesis is
the subject future investigation.

6 Conclusions

We have investigated the properties and linear stability of the travelling premixed com-
bustion waves and formation of the pulsating combustion waves in a model with two-step
chain-branching reaction mechanism in the adiabatic limit. The model was introduced by
Dold [2007]. The current paper naturally extends our previous analysis of the model in the
equidiffusional approximation [Gubernov et al., 2006a; Gubernov et al., 2008a] and for the
case of several fixed values of Lewis numbers for fuel and radicals [Gubernov et al., 2008b].

The investigation of the travelling combustion waves revealed that the Lewis number for
fuel LA has a substantial effect on the properties and the stability of the premixed flames
in our model, whereas the variation of LB effects only quantitatively the behaviour of the
combustion waves. We have found that both the stability and the properties of the travelling
combustion wave posses new and unique properties that have not been previously observed
either for the one-step or for the two-step reaction models.

It was demonstrated that depending on the Lewis number for fuel the flame speed has
either subcritical or supercritical behaviour as a function of the dimensionless activation
energy. The transition from sub- to supercritical type of dependence occurs when LA =
1. When the Lewis number for fuel is less than unity the flame speed is a single valued
monotonically decreasing function of β. The flame extinction occurs as the speed of a
combustion wave decays to zero in quadratic manner as a function of β when the critical
values of the activation energy is approached i.e. c ∼ (β−βe)2. For the Lewis number for fuel
greater than unity the dependence of the flame speed on β is double-valued and C-shaped.

16



Figure 7: Period two and four pulsating solutions for LA = 3.0, LB = 1.0, β = 4.0823 and
β = 4.0827 in Figs. (a-b) and (c-d) respectively. In Fig. (a) and (c) the dependence wmax(t)
is shown and in Fig. (b) and (d) the maximum value of the radicals concentration is plotted
vs. ξmax.
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The travelling wave solutions either do not exist or there are two solutions travelling with
different speed corresponding to fast and slow solution branches in the space of parameters.
The flame extinction occurs when the slow and fast solution branches merge as a result
of the turning point bifurcation. The slow solution branch is a monotonically increasing
function of β. For larger values of β it ceases to exist at the turning point and for smaller
β the flame speed decrease to zero as c ∼ (β − βe)2 as the critical parameter value of
the activation energy, βe, is reached. For the fast solution branch c(β) is a monotonically
decreasing function. The transition from single to double valued character of the dependence
of the flame speed on parameters occurs for the critical value of the Lewis number for fuel,
LA = 1. This case have been investigated earlier in Gubernov et al. [2006a] and Gubernov
et al. [2008a] for LB = 1 both numerically and analytically. It was shown that the speed
of combustion wave is a unique monotonically decreasing function of β. The flame speed
vanishes at the extinction point for finite value of activation energy, βe, approaching zero
according to linear law i.e. c ∼ (β − βe).

The linear stability of the travelling combustion wave has been investigated in detail by
using the Evans function method. The travelling combustion wave has been found to be
stable with respect to pulsating instabilities for all parameter values for the case LA ≤ 1.
For LA > 1 the slow solution branch is always unstable and the fast solution branch is stable
for small values of the dimensionless activation energy, β , and it loses stability via the Hopf
bifurcation as β is increased towards the turning point. When the critical parameter values
for the Hopf bifurcation are crossed in the space of parameters, a pair of complex conjugate
points of the discrete spectrum moves from the left to the right half of the complex plane
giving rise to the onset of pulsating instabilities. These instabilities can be characterized by
a Hopf frequency which is determined by an imaginary part of the pair of unstable points
of the discrete spectrum, Σdiscr, and also by a rate of growth which is determined by a real
part of this pair of points. Both the critical parameter values for the Hopf bifurcation and
the characteristics of emerging pulsating instabilities are determined for 1 < LA < 10 and
various values of LB ranging from 0.1 to 10. The Hopf bifurcation curve lies on the LA vs
β plane for LA > 1 to the left from the extinction curve. As LA is decreased from 10 to
1 both the distance between the Hopf bifurcation and the extinction locus as well as the
Hopf frequency become smaller. At LA = 1 the Hopf bifurcation and the extinction curve
intersect, the Hopf frequency vanishes, and a bifurcation of codimension two takes place -
a Bogdanov-Takens bifurcation. It is remarkable that the location of the Bogdanov-Takens
bifurcation does not depend on the Lewis number for the radicals, LB . This clearly shows
that the case LA = 1 is a distinguished limit, where the transition from one pattern in the
flame dynamics to the other occurs. The Bogdanov-Takens bifurcation is responsible for
both the change in the properties and stability of the travelling wave solution. At this point
the extinction of the travelling wave solution is changing its behaviour from a subcritical
to supercritical type. Furthermore since the Bogdanov-Takens bifurcation is a point in the
parameter space where the Hopf bifurcation locus originates, it is responsible for the onset
of pulsating instabilities. The results presented in this paper were calculated for r = 0.001.
However, for r ranging over several orders of magnitude from 0.01 to 0.0001, the same
qualitative behaviour of the properties and stability of the traveling combustion waves was
found.

It is worthwhile noting that the cellular instabilities are known to originate from the
extinction point at LA = 1 for the case of one-step reaction models [Gubernov & Kim, 2006].
Therefore we can expect that for our current model the cellular instabilities may also appear
from the Bogdanov-Takens bifurcation point and it is the bifurcation responsible for the onset
of instabilities of all types. However, this issue requires a separate thorough investigation,
which will be carried out in future work.

We have also investigated the properties of the Hopf bifurcation and the emerging pul-
sating combustion wave solutions for 1 < LA < 5. The direct integration of the governing
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partial differential Eqs. shows that the Hopf bifurcation is supercritical, the pulsations are
excited in a so called soft regime and the magnitude of oscillations is growing continuously
with the increase of β−βh in a root type manner. The properties of the pulsating waves have
been investigated in detail. We have found that it is convenient to describe the dynamics of
the pulsating waves by using wmax and ξmax variables. On a plane of these variables each
pulsating wave solution is represented by a limit cycle centered near the maximum value of
radical concentration for the travelling combustion waves and ξmax = 0. For small values
of detuning of β from the critical value βh, corresponding to the Hopf bifurcation, the limit
cycle has an elliptical form indicating that the dynamics of pulsations is close to harmonic.
As the detuning is increased the shape of the limit cycle deforms and becomes triangular.
This implies that the higher order harmonics in the Fourier time series of dynamical vari-
ables become significant. It has been shown that on average the pulsating combustion wave
propagates with a speed smaller than the speed of the travelling flame regime. The differ-
ence of the average drift speed of the pulsating wave and the corresponding speed of the
travelling combustion wave decays almost linearly with increasing β − βh. The frequency
of pulsations also decays faster with increase of the dimensionless activation energy, than
the Hopf frequency obtained from the linear stability analysis. We have considered so far
moderate values of LA only. In our previous study [Gubernov et al., 2008b] we were not
able to find pulsating combustion wave solutions for LA = 10. Our future investigation will
clarify whether it is due to insufficient accuracy of the numerical calculations in Gubernov
et al. [2008b] or there exists some other bifurcation responsible for the suppression of the
pulsating solutions appearance for LA ∼ 10. From the analysis of the one-step reaction
models it is expected that a period doubling bifurcation can emerge with further increase of
detuning. We have observed this phenomenon for the current model with chain branching
reaction mechanism. Pulsating solutions of period two and period four have been obtained.
These solutions appear as a result of two sequential bifurcations of period doubling. It is
not clear yet whether these bifurcations are part of the Feigenbaum period-doubling cascade
leading to chaos. This issue needs clarification and will be investigated in the course of our
ongoing work.
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