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In this paper we investigate the onset of instabilities in a model describing the propagation of
the steady planar premixed combustion wave. In particular, we are interested in determining
the Bogdanov–Takens bifurcation condition, which is investigated semi-analytically. We derive
an analytic condition for the existence of this type of bifurcation and based on this criterion we
numerically determine the parameter values for which the Bogdanov–Takens bifurcation occurs.
This numerical method is found to be more efficient than the previous methods.

Keywords : Linear stability; Evans function; Bogdanov–Takens bifurcation; traveling wave.

1. Introduction

Premixed nonadiabatic flames have been the object
of numerous studies for a long time. They have been
investigated both analytically using the matched
asymptotic expansion method (MAE) [Joulin &
Clavin, 1979; Booty et al., 1987; Billingham &
Mercer, 2001] and numerically by means of either
direct integration of the governing Partial Differen-
tial Equations (PDEs) [Mercer et al., 1998] or by
investigating the corresponding system of Ordinary
Differential Equations (ODEs) obtained by reduc-
ing the governing PDEs [Gubernov et al., 2004]. The
comparison of these methods is also discussed in the
work of Gubernov et al. [2003].

The numerical methods and the MAE approach
qualitatively agree in describing the properties
and the stability of the steady nonadiabatic

waves. Papers by Joulin and Clavin [1979], Booty
et al. [1987], Billingham and Mercer [2001], and
Gubernov et al. [2004] show that for given param-
eter values the solution either does not exist or
there are two solutions with different values of the
wave speed, which are referred to as “fast” and
“slow”. At the critical parameter values the “fast”
and “slow” branches coincide. This event is usually
called extinction (sometimes called a fold or turn-
ing point) and as shown by Gubernov et al. [2004]
it is a saddle-node bifurcation. The linear stability
problem for the traveling wave solution was solved
analytically by Joulin and Clavin [1979] employ-
ing the MAE method and numerically by Gubernov
et al. [2004] by using the Evans function approach.
It was demonstrated that the “slow” branch of the
solutions is unstable, whereas the “fast” branch
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can either be stable or unstable depending
on the parameter values. In a previous paper
[Gubernov et al., 2004] we investigated the tran-
sition to instability in great detail. We showed
that the steady traveling wave can lose stability
either monotonically or in an oscillatory fashion
as we approach the point of extinction along the
“fast” solution branch. The switching between these
two different routes of the transition to instability
occurs due to the presence of the Bogdanov–Takens
bifurcation [Kuznetsov, 1998].

The parameter space of the problem consists of
three parameters: τ — the inverse of the Lewis num-
ber (which is the ratio of the diffusion rates for heat
and fuel); β — the ratio of the activation energy
to heat release; � — the nondimensional heat loss
(see [Gubernov et al., 2004] for further details). For
fixed value of τ the Bogdanov–Takens bifurcation
occurs when the curve corresponding to the Hopf
bifurcation intersects with the curve corresponding
to the extinction (saddle-node bifurcation) on the
(β, �) parameter plane. So in the parameter space
(τ , β, �) the Bogdanov–Takens bifurcation condi-
tion corresponds to a curve. In our previous paper
[Gubernov et al., 2004] we undertook a prelimi-
nary investigation of the Bogdanov–Takens bifurca-
tion condition. It is extremely difficult to calculate
this bifurcation condition (i.e. the location of this
curve in the parameter space) using the Evans func-
tion method which was primarily designed to locate
points of the discrete spectrum of the linearized
problem on the complex plane. Indeed, in order to
calculate the bifurcation condition for some fixed
value of τ we have to find the critical parameter
values for the Hopf and saddle-node bifurcations,
i.e. calculate two curves on the (β, �) parameter
plane and find the point where these curves inter-
sect. The curve corresponding to the Hopf bifur-
cation is calculated by finding values of β and �
such that the discrete spectrum of the linearized
problem lies on the imaginary axis apart from the
origin. This is a costly procedure in terms of numer-
ical computation. The saddle-node locus is found
using the turning point condition for the speed of
the combustion wave (see [Gubernov et al., 2004]
for further details). While applying this procedure
we encounter several difficulties: (i) as we approach
the point of intersection (i.e. the Bogdanov–Takens
bifurcation point) the distance between the Hopf
curve and extinction curve vanishes and at some
stage we are not able to distinguish them. Thus
we have to decrease the numerical error in the

calculations which in turn increases the calculation
time substantially in order to get a better resolution
of the overall scheme and find the point of intersec-
tion accurately; (ii) as we increase τ the discrete
spectrum shifts very close to the origin for values
of β and � near the Bogdanov–Takens bifurcation
point. Consequently, this makes difficult the loca-
tion of this bifurcation point. As a result we are
not able to systematically examine the Bogdanov–
Takens bifurcation condition using the Evans func-
tion method.

In this paper, we introduce an alternative
method for calculating the Bogdanov–Takens bifur-
cation condition based on the combination of ana-
lytical and numerical approaches. This method
does not rely on the solution of the linear stabil-
ity problem. Instead, it relates the linear stability
problem with properties of the stationary solution,
namely, the search for parameter values at which
the traveling wave exhibits two simultaneous sin-
gularities: a collision between the fold or turning
point and an oscillatory instability. Usually, this
situation (which is referred to as the Bogdanov–
Takens bifurcation) is characterized by the pres-
ence of two nontrivial zeros in the spectrum of
the linear stability problem and corresponds to a
test function for detecting the Bogdanov–Takens
bifurcation as a point with double-zero eigenvalues
[Kuznetsov, 1998]. However, there is always a triv-
ial zero eigenvalue due to the translational invari-
ance and therefore this approach is not applicable
here. In this paper we derive a new test functional
which allows us to determine the Bogdanov–Takens
bifurcation condition analytically by using standard
bifurcation analysis. The derived condition is then
used for further numerical analysis. As a result,
the difficulties described above are eliminated, the
calculations are substantially simplified, and the
Bogdanov–Takens bifurcation condition is system-
atically investigated for a wide range of parame-
ters values which were not possible using existing
methods.

The rest of the paper is organized as follows.
In the next section we briefly describe the model
for the steady nonadiabatic flames and some of its
properties which are important in our description.
In Sec. 3 we derive the analytical criterion using
the perturbation approach. The comparison of the
numerical results obtained by Gubernov et al. [2004]
with the analytical prediction derived in this paper
is presented in Sec. 4. Finally, in the conclusion we
discuss the main results obtained in this paper.
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2. Model

We rewrite the nonlinear governing partial differen-
tial equations for the nonadiabatic traveling wave
(which can be found in [Gubernov et al., 2004]) in
the form

∂tu = Du + N(u), (1)

where u = (u(ξ, t), v(ξ, t))T is a vector representing
the traveling solution with u being the temperature
and v being the fuel concentration profiles,

D =

[
∂2

ξ + c∂ξ 0
0 τ∂2

ξ + c∂ξ

]
, (2)

is a linear differential operator, c is the speed of the
traveling wave, ξ is a nondimensional coordinate in
the coordinate frame moving with the wave,

N(u) =

[
ve−1/u − �u

−βve−1/u

]
, (3)

is a nonlinear vector function which consists of the
reaction and the heat loss terms, τ is the inverse
of the Lewis number, � is the nondimensional heat
loss, β is the ratio of the activation energy to heat
release of the reaction.

For a steady wave traveling without changing
its speed and form, Eq. (1) reduces to a system of
ordinary differential equations as

M(us) ≡ Dus + N(us) = 0, (4)

where we use subscript “s” to denote the steady
traveling wave solution, which typically looks as
illustrated in Fig. 1.

We can now express the linear stability prob-
lem as

Lu = λu, (5)

where L = D + W and

W ≡ ∂N
∂u

=

[
vsu

−2
s e−1/us − � e−1/us

−βvsu
−2
s e−1/us −βe−1/us

]
, (6)

is the matrix of first derivatives of the nonlinear
vector function N(u).

Gubernov et al. [2004] showed that for parame-
ter values near extinction there is always at least
one point of the discrete spectra in the vicinity
of the origin. Below we use subscript “e” in order
to denote the parameter values that correspond
to extinction. As we approach the extinction limit
along the “fast” solution branch either one or two

-3000 -2500 -2000 -1500 -1000 -500 0 500
ξ

βu,

v

0.0

0.2

0.4

0.6

0.8

1.0

1

1

2

2

3

3

Fig. 1. Numerically determined temperature and fuel pro-
files of the steady traveling wave as a function of coordinate
ξ for β = 6, � = 10−5, and τ = 0.1 (curves 1), τ = 0.5
(curves 2), and τ = 1.0 (curves 3). The temperature values
on the graph are multiplied by β.
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Fig. 2. Schematic diagram showing the location of the
points of the discrete spectra for parameter values near the
extinction limit. (a) and (b) represent the real and imagi-
nary parts respectively of the eigenvalue moving from the
left to the right half-planes (curve 1 — monotonic instabil-
ity); and the eigenvalue moving from the right to the left
half planes (curve 2 — oscillatory instability) respectively.
(c) and (d) The real and imaginary parts respectively of a pair
of eigenvalues are plotted for the case of Bogdanov–Takens
bifurcation.
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points of the discrete spectra coalesce with the ori-
gin and the following scenarios can occur: (i) If
the instability occurs in a monotonic way, then this
point moves along the real axis from the left half-
plane to the right half-plane; (ii) When the transi-
tion to instability manifests itself in an oscillatory
fashion, the point of the discrete spectra crosses the
origin along the real axis moving from the right to
the left half-planes; (iii) Finally, if the Bogdanov–
Takens bifurcation occurs, then two points of the
discrete spectra hit the origin along the imagi-
nary axis giving birth to a pair of real eigenvalues
after the collision. All three scenarios are plotted
schematically in Fig. 2. It is convenient to con-
sider the “slow” solution branch (c−ce < 0, where ce

is the critical value of the speed that correspond to
the extinction) since the eigenvalues are real in this
case and in what follows we imply λ ≡ Re(λ). As
seen from Fig. 2, the Bogdanov–Takens bifurcation
is characterized by a derivative dc/dλ being zero
at the origin in contrast to the case of monotonic
(dc/dλ < 0) or oscillatory (dc/dλ > 0) instabilities.
Next we use this condition to obtain an analytic
criteria for the existence of the Bogdanov–Takens
bifurcation.

3. Perturbation Approach

In this section we solve the eigenvalue problem (5),
where λ is assumed to be a small real parameter. At
the point of extinction (µ = µe, where µ represents
one of the bifurcation parameters β or �; c = ce)
there are no solutions to (5) except for λ = 0. As we
vary the system parameters slightly there appears
one or two solutions with nonvanishing λ. We make
a series expansion of both the solution u and the
operator L near λ = 0 as

u = u0 + λu1 + λ2u2 + · · · and

L = Le + λLeλ +
1
2
λ2Leλλ + · · · ,

(7)

where the subscript “e” implies that the parameters
are fixed at µ = µe and

Leλ =
∂c

∂λ

∂L
∂c

,

Leλλ =
∂2c

∂λ2

∂L
∂c

+
∂c

∂λ

∂2L
∂c2

, · · ·
(8)

For brevity we are going to use the following nota-
tion: cλ ≡ ∂c/∂λ, cλλ ≡ ∂2c/∂λ2 etc. Next, we

substitute (7) into (5). In the leading order we
obtain

Leu0 = 0. (9)

It is easily shown that the solution to this equa-
tion is u0 = usξ, which sometimes is referred to as
the neutral mode. Taking the derivative of (9) with
respect to c and considering u0 = usξ we can derive
a useful expression

Lecusξ + Leuscξ = 0. (10)

In the first order of the small parameter we
obtain the equation

Leu1 = usξ − cλLecusξ. (11)

The solution to (11) can be found as u1 = cλuscξ −
usc, using (10) and the derivative of (4) with respect
to c, namely,

∂M
∂c

= Lusc +
∂µ

∂c

∂M
∂µ

+ usξ = 0, (12)

where we have taken into consideration that
∂µ/∂c = 0 for c = ce. Taking a derivative of
(10) with respect to c we can derive another use-
ful expression

Leccusξ + 2Lecuscξ + Leusccξ = 0. (13)

In the second order of the small parameter
expansion we obtain

Leu2 = cλuscξ − usc − 1
2
cλλLecusξ

− 1
2
c2
λLeccusξ − c2

λLecuscξ + cλLecusc. (14)

Using (10) and (13), Eq. (14) can be rewritten in
the form

Le

(
u2 − 1

2
cλλuscξ − 1

2
c2
λuscξ

)

= cλuscξ − usc + cλLecusc. (15)

The solvability conditions for Eq. (15) can be writ-
ten using a solution v0 to the problem adjoint to
(9) as

cλ(〈v0|uscξ〉 + 〈v0|Lecusc〉) = 〈v0|usc〉, (16)

where we have introduced the inner product

〈v|u〉 =
∫ +∞

−∞
vudξ. (17)

The adjoint problem is formulated as L∗
ev0 = 0,

where L = D∗ + W∗. Differential operator D∗ is
obtained from (2) by substituting “−c” instead of
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“c” and W∗ is obtained from (6) by the transposi-
tion. Differentiating (12) with respect to c and tak-
ing into account that (∂µ/∂c)e = 0, it can be shown
that

〈v0|uscξ〉 + 〈v0|Lecusc〉 = −µcc

〈
v0

∣∣∣∣∂M
∂µ

〉
. (18)

The inner product on the right-hand side of (18)
does not vanish in general. Furthermore µcc does
not equal zero as well since µ(c) reaches its maxima
at the point of extinction. Therefore, we conclude
that cλ is equal to zero when the following condition
is satisfied

Ψ(us,v0) ≡ 〈v0|usc〉 = 0. (19)

Expression (19) is the required condition for the
existence of the Bogdanov–Takens bifurcation. It
should be noted here that since us(ξ) is a regu-
lar function which exponentially decays on ±∞ and
vs(ξ) is also a regular function bounded on ±∞
(both functions depend analytically on the param-
eters) it is therefore expected that the functional Ψ
is a bounded analytic function of the parameters. It
relates the properties of the linear stability problem
with certain symmetry of the stationary solution.
Similar criteria were derived while investigating the
linear stability of the traveling wave solutions of
KdV equation [Pego et al., 1993] and the nonlinear
Schrödinger equation [Vakhitov & Kolokolov, 1973].
However, in both these cases it is possible to express
the adjoint mode v0 in terms of the stationary solu-
tion us by utilizing the Hamiltonian structure of the
equations. This allows rewriting the stability crite-
ria (similar to (19)) in a simpler form. In our case
the problem adjoint to (9) is more complicated than
in the aforementioned examples, and to the best of
our knowledge there is no clear relation between v0

and us, which could be used to further simplify the
condition (19) and hence a numerical approach is
required.

4. Numerical Results

In this section we use the criteria (19) to numer-
ically locate the Bogdanov–Takens bifurcation. It
follows from this condition that we have to evalu-
ate the functional Ψ(us,v0) and therefore it is nec-
essary to obtain the functions us and v0. Using the
numerical methods described by Gubernov et al.
[2004] we calculate us for the parameter values cor-
responding to the extinction limit. In order to find
the derivative usc we also determine the stationary
wave solution u+

s with the speed slightly greater

(i.e. ce + δc) and stationary wave solution u−
s with

the speed slightly less (i.e. ce − δc) than the critical
value ce corresponding to the extinction. Then we
evaluate the derivative usc employing the difference
formula

usc =
u+

sc − u−
sc

2δc
. (20)

We also calculate the eigenmode v0 of the adjoint
problem by using the compound matrix method
described by Gubernov et al. [2003] and Gubernov
et al. [2004]. Next, the inner product of usc and
v0 is determined numerically. We check the accu-
racy of the numerical scheme by calculating 〈v0|usξ〉
which always has to be equal to zero since the null-
space of Le is automatically orthogonal to the null-
space of its adjoint. In our calculations it was of the
order of 10−6 or less. In Fig. 3 we plot the depen-
dence of the functional Ψ(us,v0) on the heat loss
for τ = 0.1. The parameters of the system are varied
in such a way to correspond to the limit of extinc-
tion. It is clearly seen that for some value of the
heat loss �, the curve crosses the axis Ψ = 0. This
value of � is the required parameter value when the
Bogdanov–Takens bifurcation occurs. Next, we use
the Newton–Raphson method for solving the equa-
tion Ψ = 0 in order to find the critical param-
eter values for the bifurcation. The results are
presented in Figs. 4–6. We also compared the results
with the parameter values for the Bogdanov–Takens
bifurcation which were obtained in the paper of
Gubernov et al. [2004] using the Evans function
method. The correspondence between the predic-
tions of the analytic method described in this paper

e

Ψ

Fig. 3. Dependence of functional Ψ on heat loss parameter
� for τ = 0.1.
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Fig. 4. The critical parameter values � versus τ for the
Bogdanov–Takens bifurcation.

Fig. 5. The critical parameter values β versus τ for the
Bogdanov–Takens bifurcation.

Fig. 6. The critical parameter values � versus β for the
Bogdanov–Takens bifurcation.

with the numerical results of Gubernov et al.
[2004] is excellent (the difference was found in the
third significant digit and hence the results from
Gubernov et al. [2003] are not plotted). However
the numerical costs involved in obtaining the results
using the method described here are far less than
those presented in [Gubernov et al., 2003] for rea-
sons described in the introduction. Moreover the
accuracy of the results obtained in this paper is
higher than the accuracy of the results which are
presented in [Gubernov et al., 2003], since the cal-
culations by these authors are based upon the
subjective criteria of the intersection between two
curves in the parameter space, whereas in our cur-
rent paper we use a strict mathematical criterion
for calculating the Bogdanov–Takens bifurcation
condition.

5. Conclusion

In this paper, we have investigated the Bogdanov–
Takens bifurcation for the system describing the
propagation of the nonadiabatic traveling premixed
flames. In a previous paper [Gubernov et al., 2004],
we showed that in the propagation of the sta-
tionary planar combustion waves the Bogdanov–
Takens bifurcation is responsible for the change
in the regimes of the instability from oscillatory
to monotonic. In this paper, by using the pertur-
bation approach, we were able to derive an ana-
lytical criterion for the existence of this type of
bifurcation. It relates the properties of the lin-
ear stability problem with a certain symmetry of
the stationary solution. This analytical criterion
was then implemented in the numerical scheme
which allowed us to carry out systematic calcula-
tion of the Bogdanov–Takens bifurcation condition.
We found that in terms of computational effi-
ciency the approach presented here was far supe-
rior to that reported in [Gubernov et al., 2003].
Since the perturbation analysis in Sec. 3 is appli-
cable to any reaction–diffusion system, we believe
that this approach can be easily implemented for
a general class of problems leading to improved
efficiency and ease of determining parameter val-
ues for which the Bogdanov–Takens bifurcation
occur.
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