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Abstract

In this paper we numerically study the properties and stability of the travelling combustion
waves in Zeldovich-Liñán model in the adiabatic limit in one-dimension. The structure and the
properties of the combustion waves are found to be different for the fast and slow recombination
regimes. The dependence of flame speed on the parameters of the model are studied in detail.
The results are compared to the prediction of the activation energy asymptotic analysis. Stabil-
ity of combustion waves is studied by using the Evans function method and direct integration
of the governing partial differential equations. It is demonstrated that the combustion waves
lose stability due to the supercritical Hopf bifurcation. The neutral stability boundary is found
in the space of parameters. The pulsating solutions emerging as a result of Hopf bifurcation are
also investigated.
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1 Introduction

Most of the flames proceed via complex multi-step reaction mechanisms. Important hydrocarbon-
air and hydrogen-air flames, in terms of practical applications, are usually modelled with chain-
branching reaction kinetics. Such flames normally produce a pool of radicals through the branching
reaction steps. These radicals later recombine to produce heat and products. The chain-branching
reaction mechanism cannot be adequately described by an overall single reaction and at least two-
step kinetic mechanisms are required to model it.

The first two-step chain branching reaction model was introduced by Zeldovich in 1948 [1],
where the model equations were set up. Later the model was analyzed by Liñán [2] using the
activation energy asymptotic (AEA). Therefore this model is usually referred to as the Zeldovich-
Liñán model. The model comprises a chain branching reaction A + B → 2B, and chain-breaking
(or recombination) reaction B + B + M → 2P + M , where A is the fuel, B is the intermediate
radical, P is the product, and M is a third body. It is assumed that the first reaction has a large
activation energy and is isothermic whereas, the recombination reaction has zero activation energy
and is exothermic. The condition of an isothermic first reaction was subsequently relaxed in [3].

In [2] it was shown that there are three flame regimes in the Zeldovich-Liñán model: fast,
slow and intermediate recombination. In the fast recombination regime the production of radicals
by the branching step is much slower than the consumption of radicals through the recombina-
tion step. This has the following consequences: the chain-branching and chain-recombination take
place in the same thin reaction zone, the concentration of radicals is asymptotically small, and
therefore the steady state approximation can be applied to it. In the slow recombination regime,
the concentration of radicals is O(1) and all radicals are produced in a thin reaction zone. How-
ever, the consumption of radicals proceeds in a long scale region greater or comparable to the
convection-diffusion region. In the intermediate recombination regime, the rates of the branching
and termination reactions are comparable. The concentration of radicals is neither asymptotically
small nor it is O(1) and the recombination reaction takes place in a region, which is much thicker
than the branching reaction zone, but much thinner than the convection-diffusion region.

Using the above arguments, various asymptotic expansions have been introduced in different
flame zones. The resulting asymptotic differential equations are then solved either analytically
or numerically depending on the complexity of the system of equations appearing as a results of
asymptotic analysis. The model considered in [2, 3] does not include heat loss and the response
curves obtained in these papers are single valued functions. In [4] the Zeldovich-Liñán model with
heat loss to the surroundings was considered by using the AEA. It was demonstrated that the flame
speed as a function of other parameters of the problem is a C-shaped function which exhibits turning
point-type extinction condition similar to that predicted by the one-step nonadiabatic model [5].

In a number of investigations [6, 7, 8, 9], the influence of stretch on premixed flame for the
Zeldovich-Liñán model was studied. The authors considered several distinguished limits in order
to examine the problem in terms of AEA either analytically or semi-analytically. As a result it was
found that the flame response to stretching depended upon the particular flame regime i.e. slow,
fast or intermediate recombination.

In [10], a slightly modified model with the first reaction of the form A + B → 3B was used
to describe the hydrogen-oxygen flame. Approximate formulas for the deflagration speed were
obtained in the limits of strong and weak recombination. Recently [11, 12] these results were
tested using the numerical calculations with the detailed mechanism of the reaction and it was
demonstrated that the two-step reaction model gives a good approximation of the flame propagation
velocity.

Despite the apparent success in the investigation of the speed of the combustion waves, the
stability of flames in the Zeldovich-Liñán model has not been investigated. A simplified version of
the Zeldovich-Liñán model with the first order recombination reaction was introduced recently [13],
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where the properties and stability of the travelling combustion waves were studied using AEA. In
our recent papers [14, 15, 16] we numerically investigated the properties of travelling combustion
waves and their stability with respect to pulsating perturbations and compared the results with the
predictions from the corresponding one-step models and the results presented in [13]. However the
kinetics can change the properties of combustion waves significantly and the results obtained for
the model introduced in [13] cannot be directly applied to the Zeldovich-Liñán model. The aim of
our current paper is to investigate the stability of combustion waves in the Zeldovich-Liñán model
with respect to pulsating perturbations.

The paper is organized as follows. In section 2 the governing equations and boundary condi-
tions for the model are introduced in both dimensional and dimensionless forms. In section 3 the
properties of the travelling combustion waves are studied in detail and the linear stability analysis
of these solutions is carried out in section 4. In section 5 the pulsating solutions emerging as the
neutral stability boundary is crossed in the space of parameters are investigated. The conclusions
and future work are presented in section 6.

2 Model

We consider a diffusional thermal adiabatic model (in one spatial dimension) that includes two steps:
autocatalytic chain branching A+B → 2B and recombination B +B +M → 2P +M . Following
the work of [1] it is assumed that all the heat of the reaction is released during the recombination
stage and the chain branching stage does not produce or consume any heat. According to [4], the
dimensional equations governing this process can be written as
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where T is the temperature; YA and YB represent the mass fraction of fuel and radicals respectively;
ρ is the density; λ is the thermal conductivity; cp is the specific heat; DA and DB represent the
diffusivity of fuel and radicals respectively, AR and AB are constants of recombination and chain
branching reactions respectively; WA, WB , and WM represent the molecular weight of fuel, radicals
and a third body; qF is the specific heat of the recombination reaction; E is the activation energy
for chain branching reaction; R is the universal gas constant. Equations (1) are considered subject
to boundary conditions

T = Ta, YA = Y∞
A , YB = 0 for x→ +∞,

dT/dx = 0, dYA/dx = 0, dYB/dx = 0 for x→ −∞,
(2)

which correspond to a wave travelling in the positive x direction. Upstream, on the right boundary,
T is equal to the ambient temperature, Ta; fuel has not been consumed yet and YA is equal to its
maximal initial value in the cold unreacted mixture, Y∞

A ; no radicals have been produced i.e.
YB = 0. Downstream, on the left boundary, we require that there is no reaction happening so the
solution reaches a stationary point of (1). Therefore the zero flux conditions are taken for T , YA,
and YB.
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Introducing the nondimensional variables
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and dimensionless parameters
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, (4)

where M∗ and T ∗ is the reference mass and temperature respectively, β is the dimensionless acti-
vation energy, LA,B are the Lewis numbers for fuel and radicals respectively, we write (1) and (2)
omitting primes as

ut = uxx + rw2,

vt = L−1
A vxx − βvwe−1/u,

wt = L−1
B wxx + βvwe−1/u − rβw2,

(5)

and
u = ua, v = 1, w = 0 for x→ ∞,

ux = 0, vx = 0, wx = 0 for x→ −∞.
(6)

The requirement that the reaction is frozen up- and downstream (i.e. the equilibrium is reached
for the equations (5) in both limits x → ±∞) from the reaction zone has the following implica-
tions. The right boundary condition is a stable equilibrium. Therefore small fluctuations of radical
concentration should relax to w = 0, which implies that the branching term in (5) should vanish.
It is possible only if the Arrhenius term is equal to zero i.e. e−1/ua = 0. Thus we encounter the
‘cold boundary problem’ for this model. In order to circumvent this issue, we consider zero tem-
perature boundary condition ua = 0, which is a standard technique for the one-step models [17].
In the opposite limit x→ −∞, the boundary values for temperature and species concentration are
undefined. Nevertheless, since it is assumed that the reaction is frozen downstream of the reaction
front, the source terms in the right hand sides of equations (5) must vanish. It follows from the
first equation in (5), that w = 0 on the right boundary.

3 Travelling wave solution

The solution to the problem (5), (6) is sought in the form of a traveling wave u(x, t) = u(ξ),
v(x, t) = v(ξ), and w(x, t) = w(ξ), where a coordinate in the moving frame, ξ = x−ct, is introduced
and c is the speed of the traveling wave. Substituting the solution of this form into the governing
equations we obtain

uξξ + cuξ + rw2 = 0,

L−1
A vξξ + cvξ − βvwe−1/u = 0,

L−1
B wξξ + cwξ + βvwe−1/u − rβw2 = 0.

(7)

The boundary conditions (6) can be modified if we multiply the first equation in (7) by β, add it to
the second and third equations in (7) and integrate it once with respect to ξ over (−∞, +∞). This
yields a condition: limξ→−∞ S = limξ→+∞ S, where S = βu + v + w. Combining this condition
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with (6) results in

u = 0, v = 1, w = 0 for ξ → ∞,

u = β−1(1 − σ), v = σ, w = 0 for ξ → −∞,
(8)

where σ denotes the residual amount of fuel left behind the wave and is unknown until a solution
is obtained.

In the phase space of dynamical system (7) the travelling wave solution corresponds to a trajec-
tory connecting two fixed points of equations (7). If a vector with coordinates v = (u, uξ, v, vξ, w, wξ)
is introduced then the fixed points are S1: v = (0, 0, 1, 0, 0, 0) and S2: v = (β−1(1−σ), 0, σ, 0, 0, 0).
If the system of equations (7) is linearized near S1,2 and the ansatz v(ξ) = k exp(µξ) is used, it is
easy to obtain the eigenvalues µ(1,2) and corresponding eigenvectors k

(1,2) of the resulting algebraic
system of equations. For the upstream fixed point, S1, the spectrum of eigenvalues is µ(1) = −c,
−cLA, −cLB and triple degenerate µ(1) = 0, therefore S1 is a stable node. In the opposite limit,
S2, the spectrum of eigenvalues can be found as µ(2) = −c, −cLA, double degenerate 0, and

L−1
B

(

−c±
√

c2 − 4βσL−1
B e−β/(1−σ)

)

/2 which are both negative. So, the downstream fixed point

S2 is a stable node as well. Judging from the linear stability analysis we conclude that there cannot
exist a trajectory in the phase space which connects S1 and S2, since there can be a trajectory
converging S1, however no trajectory can depart from S2 in the linear approximation. Therefore,
with the use of nonlinear analysis only the asymptotic behaviour of the solution to (7) in the limit
ξ → −∞ can be found.

In the appendix, the leading order asymptotic behaviour of the solution of (7) in the limit
ξ → −∞ is given. It is shown that there is no fuel leakage in the model i.e. σ = 0 and the
value of temperature on the left boundary is therefore u = β−1. The relation (18) between the
values of dynamical variables are found. It is seen that there are two different regimes of flame
propagation depending on the value of parameter R = reβ, which characterizes the ratio of the
reaction rates of branching and recombination. If R ≪ 1, then the branching reaction is faster
than recombination reaction and we have the slow recombination regime and vice versa, if R ≫ 1
the fast recombination regime is encountered. Equations (7) and (18) together with the boundary
conditions obtained from the linear asymptotic analysis in the limit ξ → +∞, namely, cu+uξ = 0,
c(v− 1) +LAvξ = 0, and cw+LBwξ = 0, constitute the two-point boundary value problem, which
is solved numerically by using a standard shooting algorithm with a fourth order Runge-Kutta
integration scheme first and then the results are corrected by employing the relaxation algorithm.

In figure 1 the characteristic solution profiles u(ξ), v(ξ), and w(ξ) are plotted for two regimes
of flame propagation i.e. the fast recombination, r = 100, curves 1 and the slow recombination,
r = 0.01, curves 2. The other parameters are taken as shown in the figure caption. The graphs are
scaled so that ξ changes from 0 to 1 and the profiles for r = 100.0 and r = 0.01 can be plotted on
the same figures. For profiles 1 the length of the domain of integration is 2.6× 103 and for profiles
2 it is 870. In figure 1 (b) the radical concentration profiles are plotted in logarithmic scale since
the maximum values of w for curves 1 and 2 varies in several orders of magnitude and cannot be
presented in linear scale on the same graph. As seen in figure (b) the slow recombination regime
(curve 2) is characterized by relatively large peak values of radical concentration, maxw ∼ O(1).
The upstream form of logw(ξ) is linear indicating that the governing process here is the diffusion
of radicals and heat from the hot reaction zone. This part of the solution is well described by
the linear asymptotic analysis of (7) near S2. In the product region, behind the reaction zone,
the radicals are slowly consumed due to the recombination reaction and the w(ξ) dependence is
sub-exponential. The temperature profile u(ξ) in figure (a) exhibits slow convergence to asymptotic
value u = 1 in the product region as well. In contrast, v(ξ) is similar to a step function with a
narrow branching reaction zone where almost all fuel is consumed and v switches from maximal to
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Figure 1: Temperature u(ξ), fuel concentration v(ξ) profiles in (a) and radical concentration profile
w(ξ) in (b) for LA = LB = 1, β = 1, and two values of r. In (a) the solid line corresponds to u(ξ)
and the dashed line to v(ξ). Curves 1 and 2 show the profiles for r = 100 and 0.01 respectively.
Graph (b) is plotted in logarithmic scale.

minimal values. In other words, in the regime shown with curves 2 in figure 1, the large amount of
radicals is produced in the thin branching reaction zone which consumes almost all fuel. The radical
concentration, w(ξ), reaches its peak value, which is then followed by a gradual decay of w(ξ) and
rise of u(ξ) due to the slow recombination reaction in the much wider recombination zone. For the
fast recombination regime shown with curves 1, the maximum value of w is much smaller and is
of the order of 10−3. The radical concentration profile is more localized near its peak value. The
region where the diffusion is the dominating process and logw(ξ) dependence is linear is followed
by a rapid growth of the radical concentration closer to the maximum of w(ξ). This is where the
branching reaction becomes the governing process and the fuel depletion begins. Comparing the
profiles of v(ξ) and w(ξ) in figure 1 (a) and (b) suggests that the recombination reaction, where most
of the radicals are localized, occurs in a thinner zone, than the branching reaction region, where
most of the fuel is consumed. In the product region, behind the reaction zone, w(ξ) dependence
is sub-exponential indicating that the reactions are still taking place here and the dynamics of (7)
is nonlinear. This picture of various regimes of combustion wave propagation qualitatively agree
with the results of [2].

In figure 2 (a) the dependence of the speed c on β is plotted for different values of r: 0.01
curve 1, 1.0 curve 2, 100.0 curve 3. The results of numerical integration are shown with the solid
line. The flame speed is presented in logarithmic scale to reveal various regimes of combustion
wave propagation. The cross symbol located on curve 1 indicates the parameter values where
R = reβ = 1 for r = 0.01. To the right from the cross, R becomes larger than unity and the fast
recombination regime is encountered. As seen in figure 2 (a) for R > 1 the log c(β) becomes almost
linear function. In contrast to that, to the left from the cross, where R < 1 curve 1 substantially
departs from the linear behaviour. For curves 2 and 3 with larger values of r the point where R = 1
moves to much smaller β values and is not shown here, consequently, the fast recombination regime
occurs in the whole range of activation energies shown in figure 2 (a) and the dependence of log c
on β is almost linear. In [2] it is shown that in the limit of fast recombination regime the quasi-
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Figure 2: The dependence of combustion wave speed, c, on β in (a) and c on r in (b) for LA = LB =
1. In (a) speed is plotted in logarithmic scale, the solid line represents the results of numerical
analysis and the dotted line is the prediction of AEA. The value of r is equal to 0.01 for curve 1,
1.0 for curve 2, and 100.0 for curve 3. In figure (b) parameter r is plotted in logarithmic scale and
β = 1.0.

steady state approximation applies for the radical species and the two-step chain-branching model
can be reduced to the one-step model with the second-order reaction and double the activation
energy of the branching reaction. The flame speed is found then using the AEA in the first order
of asymptotic expansion for the case of LA = LB = 1. In [4] the analysis in generalized for the
case of arbitrary Lewis numbers for fuel and radicals in both adiabatic and nonadiabatic cases.
Converting these results to the current nondimensionalization yields the following expression for
the flame speed

c =
LAe

−β

β
√

2r
. (9)

The dotted lines in figure 2 (a) represent the prediction of the AEA according to formula (9). It
is seen that in the limit of fast recombination and high β values, there is a good correspondence
between the asymptotic and numerical results. In figure 2 (b) the dependence of the flame speed
on r is illustrated for β = 1, while other parameter values are the same as in figure (a). The value
of r is changed more than four orders of magnitude and is plotted in the logarithmic scale in order
to show such a variation. There appears a clear maximum in c(r) around r = 0.1: for r higher
and smaller than this value the combustion wave travels with lower speed. It should be noted that
small values of r corresponds to slow recombination and large r to fast recombination regime. In
other words, there are two trends in c(r) dependence. For slow recombination regime the flame
speed increases with r growth and for fast recombination regime c(r) is a monotonically decreasing
function.

The results of the analysis of the dependence of the flame speed on the Lewis numbers for fuel
and radicals are illustrated in figure 3. In (a) the flame speed, c, as a function of LA is shown
with the solid curve for LB = 1 and c(LB) is shown with the dashed line for LA = 1. The other
parameters are taken as r = β = 1. The Lewis numbers are plotted in logarithmic scale. It is
clearly seen that the flame speed is almost not sensitive to the variation of LB, while it is strongly
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Figure 3: In figure (a) the dependence of the combustion wave speed, c, on LA for LB = 1 shown
with the solid line and c on LB for LA = 1 shown with dashed line for r = β = 1. The Lewis
numbers are shown in logarithmic scale. In figure (b) the speed is plotted in logarithmic scale as
a function of β for r = 0.01, LA = 2.0 curves 1; r = 0.01, LA = 0.5 curves 2; r = 100, LA = 2.0
curves 3; and r = 100, LA = 0.5 curves 4; while LB = 1. The solid line represents results from the
numerical analysis and the dotted line is the solution from the AEA, equation (9).

dependent upon LA. This result qualitatively correlates with the prediction (9) of the AEA. In
figure 3 (b) the dependence of log c(β) is plotted for LB = 1 and various values of LA and r as
described in figure caption. The numerical results are shown with the solid line, while the AEA
prediction (9) is represented by the dotted lines. Curves 1 (r = 0.01, LA = 2.0) and curves 2
(r = 0.01, LA = 0.5) show good correlation between the asymptotic and numerical results for
large values of β. In this case log c(β) becomes almost a linear function and the parameter R is
greater than unity indicating that the fast recombination regime is observed. As β is decreased,
the value of R becomes smaller than unity and the fast recombination is replaced with the slow
recombination regime. The dependence of log c on β becomes nonlinear and the correspondence
between the numerics and the AEA is poor. For r = 100.0 (curves 3 and 4) the fast recombination
regime is observed for the whole range of β in figure 3 (b). As a result the numerical and asymptotic
results qualitatively agree well for all values of the activation energy considered here.

4 Linear stability

In order to investigate the stability of the combustion waves with respect to the pulsating pertur-
bations we linearize the governing equations (5) near the travelling wave solution. In other words,
we seek the solution of the form u(ξ, t) = U(ξ) + ǫφ(ξ) exp(λt), v(ξ, t) = V (ξ) + ǫψ(ξ) exp(λt), and
w(ξ, t) = W (ξ)+ ǫχ(ξ) exp(λt), where [U(ξ), V (ξ), W (ξ)] represent the travelling combustion wave
and terms proportional to the small parameter ǫ are the linear perturbation terms. Substituting
this expansion into (5), leaving terms proportional to the first order of ǫ only, and introducing the
vector function with components v(ξ) = [φ, ψ, χ, φξ, ψξ, χξ]

T we obtain

vξ = Â(ξ, λ)v, (10)
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Figure 4: (a) Stability diagram in the LA vs β parameter plane and (b) Hopf frequency in loga-
rithmic scale as function of β. LB = 1 and r = 100.0, r = 1.0, and r = 0.01 are shown with the
dashed, solid, and dotted lines respectively.

where

Â =

[

0 Î

Ĥ(ξ, λ) Ĉ

]

, (11)
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Ĉ =





−c 0 0
0 −cLA 0
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

 , Î =





1 0 0
0 1 0
0 0 1



 . (13)

We will call a set, Σ, of all λ values for which there exist a solution to (10) bounded for both ξ → ±∞
a spectrum of linear perturbations. In the general case, Σ is a set on the complex plane and it
consists of the essential spectrum Σess and the discrete spectrum Σdisc. If there exists at least one
λ ∈ Σ such that Reλ > 0 then the travelling wave solution is linearly unstable, otherwise, if for all
λ ∈ Σ the real parts are not positive, then the travelling wave solution is linearly stable. Therefore
in order to investigate the linear stability of the travelling wave solutions to (5), the spectrum Σ of
the problem (10) has to be found. It can be shown (see [18] for details) that the essential spectrum
is comprised of parabolic curves on a complex plane with Reλ ≤ 0. This implies that it is the
discrete spectrum of the problem (10) that is responsible for the emergence of instabilities.

The linear stability problem is solved by finding the location of the discrete spectrum on the
complex plane using the Evans function method [18] implemented with the use of a compound
matrix approach (see [16] for more details). The application of the Evans function method to the
stability analysis allows one to obtain the location of the discrete spectrum on the complex plane
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and thus gives detailed information about pulsating instabilities emerging as a result of the loss of
stability of the travelling combustion wave. It is found that the travelling combustion wave loses
stability due to the Hopf bifurcation as a pair of complex conjugate points of the discrete spectrum
moves from the left to the right half of the complex plane crossing the imaginary axis at non-zero
values of Imλ. These points of the discrete spectrum give rise to pulsating instabilities which can
be characterized by the Hopf frequency ω = Imλ. The results of our analysis are summarized in
figure 4 (a), where the stability diagram is plotted in the LA vs β plane for LB = 1 and various
values of r as described in figure caption. For large LA, the neutral stability boundary tends to
constant values of activation energy. In contrast, as LA → 1 the combustion wave becomes stable
with respect to pulsations or longitudinal perturbations for a wide range of β values i.e. the stability
boundary moves towards large values of β. As seen in figure (a) the decrease of r stabilizes the
combustion wave solution so that the stability boundary shifts to larger values of the activation
energy. As r → 1 and for r > 1 the stability boundary in the LA vs β diagram tends to some
limiting behaviour: changing r in two orders of magnitude from 1 to 100 has only weak effect
upon stability boundary. In figure 4 (b) the Hopf frequency, ω, in logarithmic scale is plotted as
a function of β. Almost an exponential decay of ω is observed with an increase of β. The Hopf
frequency is also very sensitive to the variation of r. As r is decreased, substantial growth in the
frequency of pulsating instabilities is observed. The effect of LB variation on the stability of the
combustion waves is also investigated. It is found that the variation of LB from 0.3 to 3.0 results
in about 1% shift of the stability boundary towards smaller values of β for r = 1. Since LB has
only minor influence on the flame stability, the corresponding dependence of LA on β for critical
parameter values is not plotted here.

5 Pulsating solutions and Hopf bifurcation

We investigate the properties of the pulsating combustion wave solutions emerging as a result of the
Hopf bifurcation when the parameters reach critical values. The governing equations (5) are solved
in a sufficiently large coordinate domain with the boundary conditions (6) imposed at the edge
points of the space grid. For our numerical algorithm we use the method of splitting with respect
to the physical processes. Initially we solve the set of ordinary differential equations which describe
the temperature and the species concentration variations due to the branching and recombination
reactions by using the fourth order Runge-Kutta algorithm. As a next step, equations of heat and
mass transfer for fuel and radicals are solved with the Crank-Nicholson method of the second-order
approximation in space and time. The initial conditions for the numerical scheme are taken in a
form of the traveling wave solution (or autowave) of (7).

The results of our investigation are presented in figure 5 (a), (b), where the behavior of pulsating
combustion wave is illustrated for LA = 10, LB = 1, r = 1 and β = 3.8. The value of β is taken
above the critical value of the dimensionless activation energy for the Hopf bifurcation, βh = 3.657...
The initial profile taken in the form of the traveling combustion wave is unstable and exhibits
pulsating instabilities. These instabilities distort the solutions of (5) at the initial stages of the
profile evolution in time. There are transient peaks in the temperature distribution in the coordinate
space and oscillations of the shape and maximum value of the radical concentration profile, wmax,
are observed. The fuel concentration profile is mainly affected in the variation of the front curvature
although some small oscillations of the fuel concentration are observed in the product region. The
value of wmax and the location of the maximum of the radical concentration ξmax are convenient
parameters to describe the pulsating nature of the solution. Here ξ = x − cdriftt is a coordinate
in the frame traveling with speed cdrift which is a mean value of the flame propagation velocity
cdrift = limt→ xmax/t, where xmax is a coordinate of the maximum of the radical concentration in
the laboratory coordinate frame. As the pulsating instabilities evolve, the value of wmax and ξmax

oscillate with an amplitude which initially grows exponentially with time. The frequency of these

10



Figure 5: Pulsating combustion wave solutions for LB = 1, and r = 1. In (a) and (b) the
temperature and radical concentration profiles, u(ξ) and v(ξ), are plotted. The profiles are sampled
at t1 = 0, t2 = 26450, and t3 = 88225. In (c) the limit cycle in the coordinates wmax vs. ξmax is
shown. In (a), (b) and (c) the activation energy β = 3.8 and LA = 10. In (d) the relative square
amplitude, ǫ, is plotted as a function of the bifurcation parameter, ∆β for LA = 10 shown with the
crosses connected with the solid line and for LA = 3 shown with the diamonds connected with the
dotted line.
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oscillations is given by the imaginary part Imλ and the rate of exponential growth is determined
by the real part, Reλ, of the pair of points of the discrete spectrum, responsible for the onset
of instability. At times of the order of (Reλ)−1, the amplitudes of oscillations, wmax and ξmax,
reach saturation and stabilize at certain values. The behavior of u(ξ, t), v(ξ, t), and w(ξ, t) profiles
become periodic in time and so the pulsating combustion wave is formed. In figures 5 (a) and 5
(b) the temperature and the concentration of radicals profiles of the pulsating combustion wave
are plotted respectively for three moments of time t1 = 0, t2 = 26450, and t3 = 88225. Since the
solution is periodic, time is measured from 0 to T , where T = 111800 is the period of oscillations.
For the temperature profile, figure 5 (a), there are local peaks of temperature, which oscillate in
time. Also we note that the value of ξmax of the temperature maximum as well as the coordinate
of the maximum slope of u(ξ) oscillates in time near ξ = 0. The fuel concentration profile v(ξ, t)
is not plotted here. However, we note that the maximum slope of v(ξ) for fixed t changes its value
with time and also the coordinate of the maximum slope exhibits oscillations over a period of time
near the origin ξ = 0. The most remarkable soliton type dynamics is demonstrated by the radical
concentration profile w(ξ, t), which is depicted in figure 5 (b). As seen from this figure the radical
concentration as a function of ξ remains a bell-shaped function of the soliton type for all moments
of time. However, the maximum of w(ξ) and its location are periodic functions of time. This is
demonstrated in figure 5 (c), where wmax is plotted versus ξmax. It is seen that a limit cycle is
formed in the (ξmax, wmax) plane.

In order to clarify the nature of the Hopf bifurcation, the properties of the pulsating solutions
emerging from the traveling combustion wave have been investigated. The results of this investi-
gation are presented in figure 5 (d), where calculations have been undertaken for LA = 3.0 and
LA = 10. Other parameters are taken as shown in figure caption. Parameter β is increased from the
values just above the critical value for the Hopf bifurcation βh and the pulsating combustion wave is
found by solving (5) for each β. In figure 5 (d) the relative square amplitude, ǫ = ∆w2

max/w
2
h, is plot-

ted against the critical parameter ∆β = β − βh, where ∆wmax = max{wmax(t)} − min{wmax(t)}
over one period 0 < t < T , wh is the maximum of the radical concentration for the travelling
combustion wave taken at the Hopf bifurcation, β = βh. Crosses connected with the solid line
correspond to LA = 10 and diamonds connected with the dashed line represent LA = 3. For small
values of critical parameter ∆β, just beyond the the neutral stability boundary, the squared ampli-
tude shows a linear behaviour. The amplitude of oscillations is continuous and root-type function of
∆β. This is typical for supercritical Hopf bifurcation from which stable periodic solutions emanate
giving rise to stable limit cycles. As ∆β is increased the dependence of ǫ on ∆β becomes nonlinear.
The dependence of ǫ on β allows us to obtain the critical parameter values for the Hopf bifurcation
by the linear fit of the data of the direct integration of the governing equations (5). These values
are found to agree with the results of the linear stability analysis up to the third significant digit,
confirming the validity of both approaches.

6 Conclusions

In this paper the properties and the stability of combustion waves in the one-dimensional Zeldovich-
Liñán model is considered in the adiabatic limit. The structure of the travelling combustion wave is
found to depend on the recombination parameter, R, showing the relation between the characteristic
times of the branching and recombination reactions. For small values of R, the slow recombination
regime of flame propagation is observed. In this case the leading edge of the flame is governed
by heat and species diffusion, the reaction zone consists of the thin branching zone embedded into
much wider recombination region. In the branching zone almost all fuel is converted to radicals and
the radical concentration reaches the values of the order of O(1). In the recombination region the
radicals are transformed into the products and heat is released. The recombination reaction spreads
to the product zone, where the recombination, rather than the transport effects are dominating.
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As a result the temperature and species concentrations approach the asymptotic values in sub-
exponential manner. In the case of large R, the recombination reaction is faster than branching
reaction and the fast recombination regime of flame propagation is observed. In the upstream
region the transport effects are dominating. This preheat zone is followed by the reaction region,
where the recombination reaction follows the branching reaction and a steady-state approximation
applies to the radical species. As a result, the radical concentration is small. The two-step reaction
model can be reduced to the one-step reaction model with second-order reaction and double the
activation energy of that for the branching reaction in the two-step model. The results of the AEA
analysis for the one-step model are compared to the numerical data obtained for the Zeldovich-
Liñán model. It is found that the correspondence is good for the fast recombination regime and
large activation energies. In the slow recombination regime the discrepancy between the one-step
and two-step models is substantial.

The properties of the combustion wave are investigated in detail by the use of numerical inte-
gration. It is found that the flame speed is unique, the combustion wave does not exhibit extinction
as the activation energy is increased in contrast to the model with the first order recombination
reaction [14]. The flame speed is monotonically decreasing function of the activation energy. The
variation of LA effects the properties of combustion wave substantially, so that the combustion
wave travels faster for larger values of LA. In contrast, the variation of LB has almost no effect
on the flame speed. The influence of r on the speed of combustion wave is different for various
flame regimes: in the fast recombination regime c(r) is monotonically decreasing and in the slow
recombination regime c(r) is monotonically increasing function. The latter contradicts with the
prediction (9) of the one-step AEA analysis.

The stability of combustion waves with respect to pulsating perturbations was investigated by
using the Evans function method and by direct integration of the governing partial-differential
equations. The results from both methods are found to agree with high degree of accuracy. It
was determined that the travelling combustion wave loses stability due to the Hopf bifurcation. As
the bifurcation parameter is varied, a pair of complex conjugate points of the discrete spectrum of
the linear stability problem moves from the left to the right half of the complex plane crossing the
imaginary axis at nonzero coordinates giving rise to pulsating instabilities. The critical parameter
values for the Hopf bifurcation were found. It was demonstrated that on the LA versus β plane
the neutral stability boundary LA(β) is a monotonically decaying function. For large values of the
Lewis number for fuel the critical activation energy for the Hopf bifurcation, βh, tends to a definite
constant value, whereas for LA → 1 the travelling combustion wave becomes stable with respect
to pulsating perturbations i.e. βh → ∞. Varying the Lewis number for radicals, LB, has only
weak quantitative effect on the stability of combustion waves. On the other hand the influence of
r depends on the specific flame regime. For large r in the case of fast recombination, the stability
of combustion waves is almost independent of r, for example, the increase of r in two orders of
magnitude from 1 to 100 only slightly shifts the neutral stability boundary towards smaller values
of β. In contrast, for small values of r in the slow recombination regime, the stability of the
combustion wave becomes very sensitive to variation of r. For fixed r in the case of small and
moderate activation energies so that R < 1, the combustion wave becomes stable i.e. the flame is
stable in the slow recombination regime. The neutral stability boundary shifts to large β values
such that R > 1 i.e. to the parameter region corresponding to the fast recombination regime. In
other words, decreasing r below unity has a stabilizing effect on combustion wave. The nature
of the Hopf bifurcation and the properties of the pulsating solutions emerging as a result of this
bifurcation were investigated. It is demonstrated that the Hopf bifurcation is supercritical. The
amplitude of pulsations grow in a root type manner as the activation energy is increased beyond
the neutral stability boundary.

It is not clear at the moment if any further increase of bifurcation parameter would result in a
sequence of period doubling and chaos [16]. The clarification of this issue is subject of our future
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work. However, at this stage of investigation it is clear that the kinetics of the recombination
reaction has a strong influence on both the properties and stability of combustion waves.

Finally we would like to point out that our current study of the combustion waves in the
Zeldovich-Liñán model, which possesses second-order recombination reaction, has properties that
are more common to the adiabatic one-step models. This is in contrast to the first-order recombi-
nation reaction studies in [13, 14, 15, 16]. In the latter model, the existence of combustion wave
extinction and the presence of the Bogdanov-Takens bifurcation point is demonstrated even for the
adiabatic case. Similar behaviour can be expected [4] for the nonadiabatic Zeldovich-Liñán model
and the clarification of this issue is also the subject of our future investigation.

A Appendix

The leading order asymptotic behaviour of the solution to the system of equations (7) can be
found by introducing new independent variable z = w and new dynamical variables y ≡ u, q ≡ v,
p ≡ dw/dξ. We can rewrite (7) as

p2zzz + ppzyzc+ pyz + rz2 = 0,

L−1
A (p2qzz + ppzqz) + cpqz − βzqe−1/y = 0,

L−1
B ppz + cp + βzqe−1/y − rβz2 = 0.

(14)

We seek bounded solution to (14), which satisfies the following conditions: p(0) = 0, since the
derivative dw/dξ vanishes as ξ → −∞ or z → 0; we require that w(ξ) approaches zero monotonically
and therefore p(z) > 0 for sufficiently small z values. The solution is represented in a form of a
series

y(z) = y0 + y1z + . . . , q(z) = q0 + q1z + . . . , p(z) = p1z + . . . . (15)

with z being a small parameter of asymptotic expansion. Substituting (15) into (14) we obtain in
the first order O(z):

y1(p
2
1 + cp1) = 0, L−1

A p2
1q1 + cp1q1 − βq0e

−1/y0 = 0, L−1
B p2

1 + cp1 + βq0e
−1/y0 = 0. (16)

The last equation in (16) gives two solutions p1 = L−1
B

(

−c±
√

c2 − 4βL−1
B q0e−1/y0)

)

/2, which

are both negative if q0 > 0. Negative p1 implies that p(z) < 0 for some sufficiently small z values
i.e. w(ξ) is not monotonic. Thus we take the solution q0 = 0 and p1 = 0. Taking this into account
we write the second-order equations as

cp2y1 + r = 0, cp2q1 − βq1e
−1/y0 = 0, cp2 + βq1e

−1/y0 − βr = 0, (17)

which yield two solutions p2 = βe−1/u0/c, q1 = re1/y0 − 1, y1 = −re1/y0/β and p2 = βr/c, q1 = 0,
y1 = −β−1. The first solution is valid for re−1/y0 > 1 and the second for re−1/y0 < 1.

Returning to original variables we obtain that q0 = 0 implies σ = 0 and so y0 = β−1. The
relation between the dynamical variables can be written as

u = (1 − reβw)/β, v = (reβ − 1)w, wξ = βe−β/cw2 for reβ > 1,

u = (1 − w)/β, v = 0, wξ = βr/cw2 for reβ < 1,
(18)
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