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Chaotic dynamics of a single two-level atom in the field of a plane standing electromagnetic wave
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In this work we undertake an analytical and numerical investigation of the motion of a neutral two-level
atom in a plane standing electromagnetic wave using a semiclassical approximation. In our study we neglect
the energy loss from radiation. We show that, for experimentally achievable parameter values, the dynamics of
the atom can be chaotic.
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[. INTRODUCTION wave. We do not make any assumptions about either the
initial speed of the atom or the detuning between the atomic
The interaction of two-level atoms with a single mode of transition frequency and field frequencgxcept that it is
an electromagnetic field is one of the basic problems in lasgpresumed to be sufficiently large to neglect radiation effects
and atomic physics. The simplest models are based on a The rest of the paper is organized as follows. In Sec. Il we
semiclassical approximation. It is well known that theseintroduce the model and derive the equations governing the
models can exhibit dynamical chaos. One of the first systemdynamics of the atom. In Sec. Il we study the motion of the
showing chaotic behavior was proposed by P. I. Belobroyatom analytically under certain conditions. In Sec. IV the
etal. in 1976 [1] and considers a group df atoms in a applicability of the analytical solution is investigated and the
resonant cavity. A similar system, based on the semiclassicAumerical results are presented. Finally, the conclusion and
Jaynes-Cummings modg2], was considered latdB]. The  discussion are presented in Sec. V.
onset of chaos in these models is due to the break down of
the rotating-wave approximatiqiRWA) and is possible only Il. MODEL
for very high densities of atoms. However, such an approxi- . . .
mation would fail here since we assume noninteracting at- We consider the dynamics of a two-level neutral atom in
oms. A more physically relevant situation is described inthe field of a plane standing electromagnetic wa(e t)
[4,5] where a group oN monoenergetic, noninteracting two- EOCOSkXCOSwt where Eo (0,0Ep) is the amplitude of
level atoms moves through a single-mode cavity. In this casthe electric field strength vectdeis the wave number, and
chaos occurs in the RWA. It is essential thiathe number of is the frequency of the electromagnetic wave. The dynamics
particles should be sufficiently highiNE 10 in order to  of the atom is described by the wave function
change the electromagnetic field in the cavity effectivély; ~ ~ ~
the speed of the group should be sufficiently high to neglect H(r,t)=A(r,t)|1)+B(r,1)|2), (1)
the effect of spatial heterogeneity of the field on the motion
of atoms. Further considerations and generalizations of thiwherer denotes the position of the atofoenter of mass
system can be found if6]. and |1) and |2) are the ground and excited states of the
The motion of atoms under the influence of a cavity fieldatom, respectively. By introducing the variables
was investigated in depth in connection with laser cooling

and trappind 7]. A system of a small number of laser-cooled u=P,coswt+P_sinwt,

ions confined in an electromagnetic trsually a Paul trap )

was considered in a series of papf8$ It was shown that v=—Pisinwt+P_coswt, 2
the dynamics of the ions can become chaotic due to nonlin- 5 )

earity arising from the ion-ion Coulomb repulsion. [8] w=|[B[*—|Al*,

[ lassical icl I - .
ions are treated as classical particles andrternal dynam whereP., — A*B+ AB*, we can write the Bloch-type equa-

ics is not taken into consideration. The interaction of the . . X X
internal dynamics with spatial motion of an ion can lead totlons for the internal dynamics of the atom in the RWA as

dynamical chaos as well. If9] the authors analyze motion

of a two-level ion in a Paul trap under the influence of a u=-Av,

resonant laser field. The dynamics were shown to be chaotic .

for a wide range of parameter values. However, the resonant v=Au+Qwcoskx, ©)
approximation, which simplifies the system significantly, .

rules out the effect ofinternal dynamics(described by w=—Quvcoskx,

Bloch-type equationson the motion of the ior{described

classically. whereA = w,;— w is the detuning between the atomic tran-

In this paper we analyze the motion of a single neutrasition frequencyw,; and the frequency of the electromag-
two-level atom in the field of a standing electromagneticnetic wave, and)=|Eqd;,|/% denotes the Rabi frequency.
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The matrix element of dipole momenfﬁz is considered to COsX A )
be real. We can always choose the common phase of the =70, y—Q—+(aS|n6—BCOSG),
wave function(1) in such way that the latter condition is
satisfied.
Let us presume that thexternal evolutioricenter-of-mass v =acosf+ Bsind, )

motion) of the atom can be treated classically. Then the spa-
tial dynamics of the atom in the RWA satisfies the equation
B A COSX ing 0
. W—Q+'y 0. (asin6— Bcosh),
mx= > fiQkusinksx, (4)

_ whereQ, = JAZ+co$x and HzngJ,dt’. the transforma-

wherem is the mass of the atom. tion (7) is invariant with respect to the integr&; and it

The above model appears to be rather phenomenologica&onverts the integra$2=>'<2/2—829+y.
However, the exact derivation is beyond the scope of this After substitution of Eq.(7) into Eq. (5) we derive the
work and readers should refer [@0] for details. We can following equations:
omit the equations for the dynamics of the atom alongythe
andz directions as they can be shown to be trivial.

Next we introduce the new variables=kx, t' =Qt, and

parameters = (1 w?/2mcQ)Y2 A’=A/Q, and as a result A
Egs.(3) and(4) can be rewritter{with primes omittedl as a= —Xysinxsing,
+
u=— Av,
A

B=— —5xysinxcoso,
Q%

©) ®

v =AU+ WCcosX,

W= — v COSX,

) A
y=— —Xsinx(asin 6 — Bcoso),
10

X= g2usinx.

System(5) is not integrable. It has only two integrals:

2
. g“A
X=— SinX(ycosx+ asin §— Bcosb).
S =u?+v?+w?=1, Q. (y @ B )
” (6)
S,=— +s2ucosx— s2Aw, The ng_ht part of each equation (8) is proportional to at
2 least the first power of the small parameteiSystems of this

. o . type are well known and allow further analytical investiga-
qorrespondlng to unitarity and energy conservation, respegion by using an a\/eraging method de\/e|0pec[1ﬂ1]_ Ac-
tively. Note that the parametercan be treated as the scaled cording to this method we can represent the solution of Eq.

Planck constant. Consequently, the description of the exterg) as a sum of a slowlyegularly varying term(or secular
nal evolution by means of classical dynamics requires aterm) and small fast oscillations such that

least the inequalitg <1 to be satisfied. For instance, if we
take  atomic  characterisics m=10"%* g,  dj,
=10"18 erg”> cm®2, and an electromagnetic wave with
Eo=10 G, w=10" s!, thene=10"3. a=a+a, B=B+5,

€)

I1I. INTERNAL VS EXTERNAL DYNAMICS . _

In this section we considek>¢. This indicates that for YTy, XEXEX.
moderate values of the initial spepd0)|<e¢, the center-of-
mass motion is much slower than the internal evolution gov- Both the secular and fast oscillating terms are sought in
erned by Bloch-type equatiorjsee the definition of5, in  the form of a series witls being a small parameter. The aim
Egs. (6)]. We exclude this fast dynamics by appropriateof the method is to find the equations describing the regular
change of variables and rewrite E@S) in a form that allows  motion with accuracy to the desired order of the small pa-
further analysis; namely, we introduce new variabhlesg, rametere. To first order, the fast oscillating terms are not
and y such that affected by the slow motion and satisfy the equations
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FIG. 1. Poincaresection of the systerntb) for A=1, £=0.01.

Where(_h: /A2+COSZZ The secular terms&, E, ) are Every curve has an index indicating the value &f in degrees.
. . ) Angles are scaled omr.
considered to be constants. In this approximationan be

treated ase—.(Lt and Eqs.(lO) can be integrated easny. The values ofu, v, andw were sampled at moments when

Next we obtain the equations describing the secular motion. ) - }

We substitute the solution in the forf8) with fast oscillating ~ the atom had coordinate=/2 and positive speed>0.

terms given by the solution of EG10) into the syster(8). Tht_e correqundlng anglgsand ¢ were then calculated. The

Leaving the terms of ordes? we can derive the following initial conditions for the Bloch-vector components were

equations for regular motiofoverbars are omitted taken in the form(13) with ¢(0)= =/2 and different values
of 0(0)=#6,. We also choose the initial coordinai€0)

2 = 7r/2 and initial veIocityk(O) S0 as to conserve the value of

a= 05 x%sirPx B+ f1(£2), S,. In this case, it follows that(0)=sin 6, from Egs.(7).

* According to our analysig/(t)=y(0) is an integral of mo-

A2 tion and we can use the anglg to parametrize the curves in
B=— X2SireX a+ fo(£2), Fig. 1.

_ 11 IV. LOSS OF INTEGRABILITY

y=0+1f5(s?), : . o

In the previous section we have obtained integrals for

) g2A , motion of the system5). The following conditions were
X=- ZQ+S'”2><7+f4(8 ), considered to be satisfied) x(0)<1, (i) A>e, and (iii)

e<1, each being essential for the validity of our approxima-
wheref;(¢?) denotes fast oscillating terms of the ordegdf  tion.
These terms do not affect the slow regular motion and can be Let us consider systett) with x(0)~1. In this case the
neglectedor averagepif we consider the motion over time center-of-mass motion cannot be treated as slow with respect
intervals greater than the characteristic period of the fast oge the internal dynamics and therefore the analysis developed
cillations. in the previous section is no longer applicable.

The system(11) is integrable and decomposes into two |t follows from integral S, that x~2S,—&s%(Aw
parts describing the external and internal dynamics sepa- cosxu)+--- . This means that we can seek the solution of
rately. The center-of-mass motion depends on the intematq (s) in the form of an infinite series with? being a small
state of the atom via the initial condition only and can beparameter of the asymptotic procedure:
described as oscillations in an effective potential of the form

U(x)=—g2yA%+cosx. (12) U=uUg+&2u,+0(e?),

The maximum and minimum of the potentidl(x) are lo-
cated at nodes or antinodes of the standing wavey 1§ (14)
positive (negative the nodes of the standing wave corre-

spond to maximaminima) of U(x). wW=Wwy+&°W,+0(e?),

The system(5) was integrated numerically fak=1, ¢
=0.01, and the fixed value @&,=¢2. In Fig. 1 we plot the
projection of the phase trajectory on the unit sph&ye u?
+v2+w?=1, which was parametrized in the following way:

v=vo+ev,+0(e%),

X=Xg+&2X,+ O(&%).

After substitution of Eq(14) into Eq. (5) we derive the
u=sinfcose, v=co0sh, W=sinfsine. (13 zeroth order approximation equations
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FIG. 2. Autocorrelation functioB(7) for A=1, ¢=0.05, and

x(0)=0.7.
l-,|0: - AU(),
Vo= AUgy+WgCOSXy,
. (15)
WOZ - Uoc()SXO,
XOZO

The last equation is trivial and implies immediately thgt

=x(0)t. The internal dynamics are governed by Bloch-type_
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FIG. 3. Poincaresection of the systen5) for A=0.01, &
=0.01. Angles are scaled aon. The solid curve shows the bound-
ary of the region of the phase space accessible to the sySjeand
related to the conservation of ener8y.

3 we plotted the Poincarsection for systen(5) with the
angles§ and ¢ defined as in Fig. 1. We took parameter
values A=0.01, £¢=0.01, and initial conditionsey= 6,

= /3, x(0)=0.47, x(0)=0. The values of9 and ¢ were
sampled at moments when the atom had coordixaté and
positive speed>0. We also calculated the Lyapunov expo-
nent, which was found to be=0.01*+0.002.

In Fig. 4 the Poincareection is plotted foA =1 ande

1. The initial conditions were taken to be the same as for

equations with harmonic perturbation and, according to th?he previous case. The Lyapunov exponent in this case was

Floquet theorem, quasiperiodic behavior is expectedifor
Vo, andwy.

Collecting terms proportional te?, it is easy to obtain the
second order approximation equations

l-,|2: - sz,
0= AU, ~+W,C0SXg— X,WoSinXo,
(16)

Wy = —1,C0SXq+ X5USINXg,

Xo=UpSiNXg.

N=0.22+0.05.

In both figures the trajectories belong to a chaotic compo-
nent covering most of the phase space accessible to the sys-
tem.

V. CONCLUSION

In this paper we have studied the motion of a neutral atom
in the field of a plane standing electromagnetic wave. The
dynamics of the atom were investigated in a semiclassical
approximation: the motion of the atom was described classi-
cally and the internal dynamics were considered quantum
mechanically. The estimation of the scaled Planck constant

The equation fox, of system(16) is expressed in terms
of the zeroth order variables only and can be integrated ana-

1.2 . —— .
lytically. After substituting this solution into the first three i
equations of systenil6) we obtain quasiperiodically per- :
turbed Bloch-type equations. Continuing this procedure, we 10 ]
can obtain the solution with any desired accuracy. [
In Fig. 2 the autocorrelation function 08 7
Bu(7)=u(t+)u(t)—u(t)? 17 06 | -
of u(t) is shown for ¢q= 6y= /3, x(0)=0, and a large 04 [ ]
value of the initial velocityx(0)=0.7. The autocorrelation [
function does not decay, suggesting that the motion is regu- 02 L , , , ,
lar. 0.0 0.2 0.4 0.6 08 o 1.0

Other ways of losing the applicability of the solution ob-
tained in Sec. Il include decreasing the detunihigo the FIG. 4. Poincaresection of the systent5) for A=1, e=1.
order of the small parameteror increasing to the order of  Angles are scaled om. The solid curve has the same definition as
1. In both these cases the dynamics becomes chaotic. In Fig. Fig. 3.
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indicates that such an approach is feasible. regular in this case, we can expect them to be quite compli-
We show, both analytically and numerically, that the mo-cated.
tion is regular and can be characterized by the absence of It was shown that if either conditiofii) or (iii ) is violated
energy exchange between the internal and external motion @hen the motion becomes chaotic and can be characterized by
the atom if the folloyving conditions are satisfig@): the ini-  positive Lyapunov exponents. However, it is important to
tial velocity of atomx(0)<cQ/w; (ii) the detuning between note that if(iii) is violated the spatial motion of the atom
the atomic transition frequency and field frequendcy Q) ; cannot be treated classically and our model fails. In this re-
and (i ) the scaled Planck constast<1. gard it is interesting to investigate the behavior of the corre-
We show that ifany of these conditions is violated, the sponding quantum mechanical model describing the motion
analytical solution is no longer applicable. For example, ifof a neutral atom for values af=1.
the first condition(i) is violated the motion of the atom can  The estimation of the parameters suggests that a laser
be represented in the form of a series withbeing a small  field can be used as a source of the electromagnetic wave and

parameter. To first order, the motion of the atom becomege believe that the chaotic motion of neutral atoms can be
quasiperiodic. However, if we consider the next order thegetected experimentally.

internal dynamics are described by quasiperiodically per-

turbed Bloch-type equations. A series of papers was devoted

to the investigation of this systefi2—15. It was shown to ACKNOWLEDGMENTS

exhibit behavior that possesses quasicontinuous power spec-
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