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Chaotic dynamics of a single two-level atom in the field of a plane standing electromagnetic wav
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In this work we undertake an analytical and numerical investigation of the motion of a neutral two-level
atom in a plane standing electromagnetic wave using a semiclassical approximation. In our study we neglect
the energy loss from radiation. We show that, for experimentally achievable parameter values, the dynamics of
the atom can be chaotic.
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I. INTRODUCTION

The interaction of two-level atoms with a single mode
an electromagnetic field is one of the basic problems in la
and atomic physics. The simplest models are based o
semiclassical approximation. It is well known that the
models can exhibit dynamical chaos. One of the first syste
showing chaotic behavior was proposed by P. I. Belob
et al. in 1976 @1# and considers a group ofN atoms in a
resonant cavity. A similar system, based on the semiclass
Jaynes-Cummings model@2#, was considered later@3#. The
onset of chaos in these models is due to the break dow
the rotating-wave approximation~RWA! and is possible only
for very high densities of atoms. However, such an appro
mation would fail here since we assume noninteracting
oms. A more physically relevant situation is described
@4,5# where a group ofN monoenergetic, noninteracting two
level atoms moves through a single-mode cavity. In this c
chaos occurs in the RWA. It is essential that~i! the number of
particles should be sufficiently high (N51010) in order to
change the electromagnetic field in the cavity effectively;~ii !
the speed of the group should be sufficiently high to neg
the effect of spatial heterogeneity of the field on the mot
of atoms. Further considerations and generalizations of
system can be found in@6#.

The motion of atoms under the influence of a cavity fie
was investigated in depth in connection with laser cool
and trapping@7#. A system of a small number of laser-coole
ions confined in an electromagnetic trap~usually a Paul trap!
was considered in a series of papers@8#. It was shown that
the dynamics of the ions can become chaotic due to non
earity arising from the ion-ion Coulomb repulsion. In@8#
ions are treated as classical particles and theinternal dynam-
ics is not taken into consideration. The interaction of t
internal dynamics with spatial motion of an ion can lead
dynamical chaos as well. In@9# the authors analyze motio
of a two-level ion in a Paul trap under the influence of
resonant laser field. The dynamics were shown to be cha
for a wide range of parameter values. However, the reso
approximation, which simplifies the system significant
rules out the effect ofinternal dynamics~described by
Bloch-type equations! on the motion of the ion~described
classically!.

In this paper we analyze the motion of a single neu
two-level atom in the field of a standing electromagne
1050-2947/2002/66~1!/013408~5!/$20.00 66 0134
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wave. We do not make any assumptions about either
initial speed of the atom or the detuning between the ato
transition frequency and field frequency~except that it is
presumed to be sufficiently large to neglect radiation effec!.

The rest of the paper is organized as follows. In Sec. II
introduce the model and derive the equations governing
dynamics of the atom. In Sec. III we study the motion of t
atom analytically under certain conditions. In Sec. IV t
applicability of the analytical solution is investigated and t
numerical results are presented. Finally, the conclusion
discussion are presented in Sec. V.

II. MODEL

We consider the dynamics of a two-level neutral atom
the field of a plane standing electromagnetic waveEW (rW,t)
5EW 0coskxcosvt, where EW 05(0,0,E0) is the amplitude of
the electric field strength vector,k is the wave number, andv
is the frequency of the electromagnetic wave. The dynam
of the atom is described by the wave function

c~rW,t !5A~rW,t !u1&1B~rW,t !u2&, ~1!

where rW denotes the position of the atom~center of mass!,
and u1& and u2& are the ground and excited states of t
atom, respectively. By introducing the variables

u5P1cosvt1P2sinvt,

v52P1sinvt1P2cosvt, ~2!

w5uBu22uAu2,

whereP65A* B6AB* , we can write the Bloch-type equa
tions for the internal dynamics of the atom in the RWA as

u̇52Dv,

v̇5Du1Vwcoskx, ~3!

ẇ52Vvcoskx,

whereD5v212v is the detuning between the atomic tra
sition frequencyv21 and the frequency of the electroma
netic wave, andV5uEW 0dW 12u/\ denotes the Rabi frequency
©2002 The American Physical Society08-1
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The matrix element of dipole momentadW 12 is considered to
be real. We can always choose the common phase of
wave function~1! in such way that the latter condition i
satisfied.

Let us presume that theexternal evolution~center-of-mass
motion! of the atom can be treated classically. Then the s
tial dynamics of the atom in the RWA satisfies the equati

mẍ5
1

2
\Vkusinkx, ~4!

wherem is the mass of the atom.
The above model appears to be rather phenomenolog

However, the exact derivation is beyond the scope of
work and readers should refer to@10# for details. We can
omit the equations for the dynamics of the atom along thy
andz directions as they can be shown to be trivial.

Next we introduce the new variablesx85kx, t85Vt, and
parameters«5(\v2/2mc2V)1/2, D85D/V, and as a resul
Eqs.~3! and ~4! can be rewritten~with primes omitted! as

u̇52Dv,

v̇5Du1wcosx,
~5!

ẇ52vcosx,

ẍ5«2usinx.

System~5! is not integrable. It has only two integrals:

S15u21v21w251,
~6!

S25
ẋ2

2
1«2ucosx2«2Dw,

corresponding to unitarity and energy conservation, resp
tively. Note that the parameter« can be treated as the scale
Planck constant. Consequently, the description of the ex
nal evolution by means of classical dynamics requires
least the inequality«!1 to be satisfied. For instance, if w
take atomic characteristics m510224 g, d12
510218 erg1/2 cm3/2, and an electromagnetic wave wit
E0510 G, v51015 s21, then«51023.

III. INTERNAL VS EXTERNAL DYNAMICS

In this section we considerD@«. This indicates that for
moderate values of the initial speeduẋ(0)u<«, the center-of-
mass motion is much slower than the internal evolution g
erned by Bloch-type equations@see the definition ofS2 in
Eqs. ~6!#. We exclude this fast dynamics by appropria
change of variables and rewrite Eqs.~5! in a form that allows
further analysis; namely, we introduce new variablesa, b,
andg such that
01340
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u52
cosx

V1
g2

D

V1
~asinu2bcosu!,

v5acosu1bsinu, ~7!

w5
D

V1
g2

cosx

V1
~asinu2bcosu!,

whereV15AD21cos2x and u5*0
t V1dt8. the transforma-

tion ~7! is invariant with respect to the integralS1 and it
converts the integralS25 ẋ2/22«2V1g.

After substitution of Eq.~7! into Eq. ~5! we derive the
following equations:

ȧ5
D

V1
2

ẋgsinxsinu,

ḃ52
D

V1
2

ẋgsinxcosu,

~8!

ġ52
D

V1
2

ẋsinx~asinu2bcosu!,

ẍ52
«2D

V1
sinx~gcosx1asinu2bcosu!.

The right part of each equation in~8! is proportional to at
least the first power of the small parameter«. Systems of this
type are well known and allow further analytical investig
tion by using an averaging method developed in@11#. Ac-
cording to this method we can represent the solution of
~8! as a sum of a slowlyregularly varying term~or secular
term! and small fast oscillations such that

a5ā1ã, b5b̄1b̃,
~9!

g5ḡ1g̃, x5 x̄1 x̃.

Both the secular and fast oscillating terms are sough
the form of a series with« being a small parameter. The aim
of the method is to find the equations describing the regu
motion with accuracy to the desired order of the small p
rameter«. To first order, the fast oscillating terms are n
affected by the slow motion and satisfy the equations
8-2
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ȧ̃5
D

V̄1
2

ẋ̄ḡsinx̄sinū,

ḃ̃52
D

V̄1
2

ẋ̄ḡsinx̄cosū,

~10!

ġ̃52
D

V̄1
2

ẋ̄sinx̄~ āsinū2b̄cosū !,

ẍ̃52
«2D

V̄1

sinx̄~ āsinū2b̄cosū !,

whereV̄15AD21cos2x̄. The secular terms (ā, b̄, . . . ! are
considered to be constants. In this approximationu can be
treated asū5V̄1t and Eqs.~10! can be integrated easily
Next we obtain the equations describing the secular mot
We substitute the solution in the form~9! with fast oscillating
terms given by the solution of Eq.~10! into the system~8!.
Leaving the terms of order«2 we can derive the following
equations for regular motion~overbars are omitted!:

ȧ5
D2

2V1
5

ẋ2sin2x b1 f 1~«2!,

ḃ52
D2

2V1
5

ẋ2sin2x a1 f 2~«2!,

~11!
ġ501 f 3~«2!,

ẍ52
«2D

2V1
sin 2xg1 f 4~«2!,

wheref i(«
2) denotes fast oscillating terms of the order of«2.

These terms do not affect the slow regular motion and can
neglected~or averaged! if we consider the motion over time
intervals greater than the characteristic period of the fast
cillations.

The system~11! is integrable and decomposes into tw
parts describing the external and internal dynamics se
rately. The center-of-mass motion depends on the inte
state of the atom via the initial condition only and can
described as oscillations in an effective potential of the fo

U~x!52«2gAD21cos2x. ~12!

The maximum and minimum of the potentialU(x) are lo-
cated at nodes or antinodes of the standing wave. Ifg is
positive ~negative! the nodes of the standing wave corr
spond to maxima~minima! of U(x).

The system~5! was integrated numerically forD51, «
50.01, and the fixed value ofS25«2. In Fig. 1 we plot the
projection of the phase trajectory on the unit sphereS15u2

1v21w251, which was parametrized in the following wa

u5sinucosw, v5cosu, w5sinusinw. ~13!
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The values ofu, v, andw were sampled at moments whe
the atom had coordinatex5p/2 and positive speedẋ.0.
The corresponding anglesu andw were then calculated. The
initial conditions for the Bloch-vector components we
taken in the form~13! with w(0)5p/2 and different values
of u(0)5u0. We also choose the initial coordinatex(0)
5p/2 and initial velocityẋ(0) so as to conserve the value
S2. In this case, it follows thatg(0)5sinu0 from Eqs.~7!.
According to our analysisg(t)5g(0) is an integral of mo-
tion and we can use the angleu0 to parametrize the curves i
Fig. 1.

IV. LOSS OF INTEGRABILITY

In the previous section we have obtained integrals
motion of the system~5!. The following conditions were
considered to be satisfied:~i! ẋ(0)!1, ~ii ! D@«, and ~iii !
«!1, each being essential for the validity of our approxim
tion.

Let us consider system~5! with ẋ(0);1. In this case the
center-of-mass motion cannot be treated as slow with res
to the internal dynamics and therefore the analysis develo
in the previous section is no longer applicable.

It follows from integral S2 that ẋ'2 S22«2(Dw
2cosxu)1••• . This means that we can seek the solution
Eq. ~5! in the form of an infinite series with«2 being a small
parameter of the asymptotic procedure:

u5u01«2u21O~«4!,

v5v01«2v21O~«4!,
~14!

w5w01«2w21O~«4!,

x5x01«2x21O~«4!.

After substitution of Eq.~14! into Eq. ~5! we derive the
zeroth order approximation equations

FIG. 1. Poincare´ section of the system~5! for D51, «50.01.
Every curve has an index indicating the value ofu0 in degrees.
Angles are scaled onp.
8-3
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u̇052Dv0 ,

v̇05Du01w0cosx0 ,
~15!

ẇ052v0cosx0 ,

ẍ050.

The last equation is trivial and implies immediately thatx0

5 ẋ(0)t. The internal dynamics are governed by Bloch-ty
equations with harmonic perturbation and, according to
Floquet theorem, quasiperiodic behavior is expected foru0 ,
v0, andw0.

Collecting terms proportional to«2, it is easy to obtain the
second order approximation equations

u̇252Dv2 ,

v̇25Du21w2cosx02x2w0sinx0 ,
~16!

ẇ252v2cosx01x2v0sinx0 ,

ẍ25u0sinx0 .
The equation forx2 of system~16! is expressed in term

of the zeroth order variables only and can be integrated a
lytically. After substituting this solution into the first thre
equations of system~16! we obtain quasiperiodically per
turbed Bloch-type equations. Continuing this procedure,
can obtain the solution with any desired accuracy.

In Fig. 2 the autocorrelation function

Bu~t!5u~ t1t!u~ t !̄2u~ t !̄2 ~17!

of u(t) is shown forw05u05p/3, x(0)50, and a large
value of the initial velocityẋ(0)50.7. The autocorrelation
function does not decay, suggesting that the motion is re
lar.

Other ways of losing the applicability of the solution o
tained in Sec. III include decreasing the detuningD to the
order of the small parameter« or increasing« to the order of
1. In both these cases the dynamics becomes chaotic. In

FIG. 2. Autocorrelation functionBu(t) for D51, «50.05, and

ẋ(0)50.7.
01340
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3 we plotted the Poincare´ section for system~5! with the
anglesu and w defined as in Fig. 1. We took paramet
values D50.01, «50.01, and initial conditionsw05u0

5p/3, x(0)50.4p, ẋ(0)50. The values ofu and w were
sampled at moments when the atom had coordinatex50 and
positive speedẋ.0. We also calculated the Lyapunov exp
nent, which was found to bel50.0160.002.

In Fig. 4 the Poincare´ section is plotted forD51 and«
51. The initial conditions were taken to be the same as
the previous case. The Lyapunov exponent in this case
l50.2260.05.

In both figures the trajectories belong to a chaotic com
nent covering most of the phase space accessible to the
tem.

V. CONCLUSION

In this paper we have studied the motion of a neutral at
in the field of a plane standing electromagnetic wave. T
dynamics of the atom were investigated in a semiclass
approximation: the motion of the atom was described cla
cally and the internal dynamics were considered quan
mechanically. The estimation of the scaled Planck cons

FIG. 3. Poincare´ section of the system~5! for D50.01, «
50.01. Angles are scaled onp. The solid curve shows the bound
ary of the region of the phase space accessible to the system~5! and
related to the conservation of energyS2.

FIG. 4. Poincare´ section of the system~5! for D51, «51.
Angles are scaled onp. The solid curve has the same definition
in Fig. 3.
8-4
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indicates that such an approach is feasible.
We show, both analytically and numerically, that the m

tion is regular and can be characterized by the absenc
energy exchange between the internal and external motio
the atom if the following conditions are satisfied:~i! the ini-
tial velocity of atomẋ(0)!cV/v; ~ii ! the detuning between
the atomic transition frequency and field frequencyD@«V;
and ~iii ! the scaled Planck constant«!1.

We show that ifany of these conditions is violated, th
analytical solution is no longer applicable. For example
the first condition~i! is violated the motion of the atom ca
be represented in the form of a series with«2 being a small
parameter. To first order, the motion of the atom becom
quasiperiodic. However, if we consider the next order
internal dynamics are described by quasiperiodically p
turbed Bloch-type equations. A series of papers was dev
to the investigation of this system@12–15#. It was shown to
exhibit behavior that possesses quasicontinuous power s
tra of dynamical variables for appropriately chosen frequ
cies of perturbation. Although the dynamics of the atom
h.

s
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regular in this case, we can expect them to be quite com
cated.

It was shown that if either condition~ii ! or ~iii ! is violated
then the motion becomes chaotic and can be characterize
positive Lyapunov exponents. However, it is important
note that if ~iii ! is violated the spatial motion of the atom
cannot be treated classically and our model fails. In this
gard it is interesting to investigate the behavior of the cor
sponding quantum mechanical model describing the mo
of a neutral atom for values of«>1.

The estimation of the parameters suggests that a l
field can be used as a source of the electromagnetic wave
we believe that the chaotic motion of neutral atoms can
detected experimentally.
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