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Interaction of two one-dimensional Bose-Einstein solitons: Chaos and energy exchange
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We analyze the bright soliton interactions of a Bose-Einstein condensate in quasi-one-dimensional traps
putting an emphasis on integrability break down due to a trapping potential. In particular, we derive a simple
analytical model, which describes well all major features of soliton dynamics including chaos and energy
exchange between interacting solitons induced by the trapping potential.
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[. INTRODUCTION where u<1 is the anisotropy parameter. Such a potential
forms a cigar-shaped trap oriented along xhéirection. In

Bose-Einstein condensatidBEC) was first observed in this case the collective dynamics may be described by the
1995 in a series of remarkable experiments on vapors ofne-dimensional Gross-PitaevskisP) equation. Details of
rubidium[1] and sodium2]. Later BEC of lithium[3] and  the derivation and normalization are very similar to that
hydrogen[4] was also demonstrated. These discoveries inifound in Ref.[6]. The (1+1)-dimensional macroscopic dy-
tiated an avalanche of further works dealing both with ex-namics of the condensate wave function is governed by the
perimental and theoretical aspects of BEsge the recent equation:
review[5]). Soon after the first experimental observations of
the BEC phenomenon it was realized that coherent dynamics Y Py 5
of the condensate wave function may lead to the formation el ﬁ“" P2 p—V(x) =0, 1)
of bright[6], dark[7], and vorteX 8] solitons—self-localized
formations pf mcrease(bnght) or decreasetark or vortex where the nonlinearity parameter is defined as=
wave function density.

However, theoretical studies of soliton dynamics in BECs 2Nada| {ao. I%éhc':s def|n|t|9nNh|s the nudmber of partlclt_as
were usually limited to investigation of single soliton evolu- trappﬁ in-a d stateq 'Sdt € groun St"."t: scatteh:mg
tion under the influence of external fields and perturbationéengt » do and a, are con ensate s_lzee_y\nt out sell-
(see, e.g., Refi6]) or to analysis of weakly nonlineatow interaction in transverse ¥,z) and longitudinal X) direc-

BEC density case where generalized versions of the stanlions’ _respectively[The trangv'erse directionsand z have
dard linear coupled-mode theory hdiste, e.9.[9,10])). We been integrated out in obtaining the GP equatibn] The

would like to go far beyond this analysis and present a Conparamgterx is po;itive for conc!ensat_es with self-attraction
sistent analytical approach for studying long-term evolution("€gative scattering length; this regime was observed for

of interacting solitons in dens@trongly nonlinearconden-  BEC in lithium [12]). The specific form of trapping potential

sates. In this paper we start with the simplest case of one?(X) depends on the details of the experimental setup.
We note that for validity of the quasi-one-dimensional

dimensional bright BEC solitons, developing a full-scale i S )
analytic model and comparing its predictions with direct nu-@PProximation(1), the conditionagya,/ V8mN[al>a, (i.e.,

merical modeling. In particular, we discover the existence of'€@ling length is larger than the transverse size of the trap
stable two-soliton bound statésisolitong and observe dy- shoulq be satisfied. Taking this requirement into account and
namical chaos caused solely by soliton interactions in a ste€h00SiNg sample parameter valuesaas—1.45 nm(as for
tionary trap. Li) .and ap=1.0 um, we estimate the physical range of_our

The rest of the paper is organized as follows: in Sec. Il wehonlinear parameter as>7.0x10 °N% We note that, in
start with the Gross-Pitaevskii equation and derive a solitorPrinciple, there are two ways to reduce the effective value of
interaction ordinary differential equatiof©DE) system: in A to relatively small valuegx|~1: (i) using a magnetic-
Sec. Il we investigate the static properties and stability offield-induced Feshbach resonance technique of R&j. to
stationary bisoliton states; in Sec. IV we suggest the modireduce the scattering length parameter (i) simply work-
fied ODE system to describe the long-term dynamics of iniNg with very low BEC densitiessmall numbeN of trapped
teracting(colliding) solitons; in Sec. V this model is used to atoms in a BEC staje However for typical BEC experi-
quantify the energy exchange between the colliding solitongents @~1.0 nm, N>10%) the nonlinear parameter is
and subsequent development of chaos; finally, Sec. VI corlarge (\~10°—10%).

tains conclusions and discussion. Although Eg. (1) is not integrable analytically, it pos-
sesses two important integrals of motion, which we will refer

to asenergy

Il. BASIC MODEL
We consider the macroscopic dynamics of BEC in a =Y 1
e oSeopiE YA E=f H— PHVOOLYP= SA X (2
strongly anisotropic trapping potentidd=V(Xx,y/u,z/u), 2 2

1063-651X/2001/64.)/0166079)/$20.00 64 016607-1 ©2001 The American Physical Society



ELYUTIN, BURYAK, GUBERNOV, SAMMUT, AND TOWERS PHYSICAL REVIEW E64 016607

andmass wherei=1,2, and¢® andx(?) are constants that define the
initial soliton positions and phases. Note that we allow all
internal parameters of both solitoltise., 81, B, C4, and

C,) to depend on &low variable T. Then we look for an
asymptotic two-soliton solution of Eql) in the form of an
Equation (1) without an external potentidli.e., for V(x)  infinite series withe being a small parameter of the
=0] is an integrable mod¢lL4] and its one-soliton solutions asymptotic procedure. This approach is self-consistent only

o= [ Iyfax @

may be presented in the form, if certain compatibility conditions are satisfied. These com-
patibility conditions lead to a system of ordinary differential
P(x,t)=g(x—Ct,t)ePt, (4)  equations that is much simpler than the original modg|

but is still too complex to provide immediate physical in-

whereC and g are soliton velocity and energy level, respec-Sight. However, this system can be simplified further using

tively, and complexstationary i.e., t independent, one- additional assumptions. o _ _
soliton squtionsT// are given by Let us considetwo almost identical solitonsvhich also

have opposite initial velocities. In other words, initialG
= —C,. Using these assumptions we can obtain the follow-

V2

WB,CX)= sech \/E;()eic”xm, (5) ing analytical system for adiabatically changing soliton pa-
N rameters:
where B=B—C?/4, x=x—Ct. If A\>1, solitons given by _23_Q1-- ﬂ_o
Egs. (5) can be used as a initial conditions in numerical ﬁﬂl¢1 gy
analysis of soliton collisions and as zero-order approxima-
tions for construction of asymptotic interaction theory. In the IQ, U
analysis below, we choogg=\?/16 effectively normalizing —2W¢2+ WIO,
the mass invariant3) to unity for a single solitor{4). Note, 2 2
that the total mass value may be different fr@w1 if we JU dV(x,)
have more than one single soliton, e.g., it takes the value QX +—+2Q, ! =0, (8)
Q=2 for a bisoliton analyzed in the next section. Xy dx
Using the methods of Refl5] we can derive a general
system of ODEs for the soliton parameters, describing the dV(xz)

adiabatic interaction of two almost identical BEC solitons in Q2X2+5_X2 +2Q; dx, 0,
an external trap. This is based on two major assumptions that

(i) the relative distance between solitons is large in com- \yhere ¢;(t) andx;(t) denote soliton phases and center po-

parison to their sizer1/A, the approximation of well-  sjtions and the potential can be written in terms of soliton
separated solitonsand (i) relative soliton velocityAC  overlap integrals as
=C,—C; is small AC<1). Below we give an outline of
the derivation procedure omitting the technical detéis a © L
similar detailed derivation see, e.g., REf6]). An alterna- U=—2\cospRe|  (|4|?Pts5 + ol ?07 ) dX,
tive approach to the description of soliton interaction was o ©)
used in Ref[17].

We take two well-separated one-soliton solutions of Eq. _ . . .
(1) as the zeroth approximation of a nonstationary two—)(’é?\iﬁﬁ?h‘ng;l%w; th\?vgﬁﬁeugf?;inﬁgr&e;miigygoi(c)ilil-_
soliton solution. In other words we look for a solution of Eq. ' 9

(D) in the form tions Q;=Q,=1 (B;=/,=\?/16). Then the potentiall
may be approximated as
Y=yt = (X=X, T)expli ¢y) U(,r)=—r2cosgp e M4 (10)
+Ya(x— Xz, T)EXH 65), (6) _
wherer =x,—X;.

where subscripts 1 and 2 refer to first and second soliton System(8) may be simplified further by the standard ex-
respectivelyT=et (¢<1), and¢; andx; are soliton phases change of absolute phase variablgsfor a relative phase

and center positions given by variable ¢:
T . .U
¢i=f Bi(THdT + %, Mg+ ——=0,
0 o
T . .U dv
Xi:f Ci(THdT +x{, (7) M Xy +~—+2M, =0, (19)
0 z?Xl Xm
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Ju dv

MXXZ"F(;—XZ‘FZMXd—Xz:O,

where the “phase massM , is defined by the equation
3Q1)_1+<3Q2)_1
9B Bz

Taking into account the normalization we hadé,=Q,
:Q2:1 andM¢:_8/)\2.

—2M¢1=( (12)

Ill. STATIONARY BISOLITON

First, we investigate the stationary case considering two

solitons with equal amplitudesand massgs As follows

from system(11) a stationary solution requires the following

conditions to be satisfied

&U_O
g_l
dv dV_O 13
d—)(1+d—)(2— , 13
dv U

dv
dx; dx, oar°

From the first of these equations and Efj0) it is easy to
find the stationary values of phase differentg=0,7. The
interaction of solitons is attractive fap,=0 and repulsive
for ¢o= . System(13) has no solutions fov'(x)=0; there-

fore two interacting solitons cannot form a stationary solu-

tion of the GP equation in free spaf#8]. However, in the

presence of a confining potential the balance of externd

PHYSICAL REVIEW E 64 016607

that for ¢= 7 and for a potential with a minimumh¢0)
bisoliton state is always stable. Quantitative details of sta-
tionary bisoliton structure may be also obtained using the
system(11). To demonstrate the effectiveness of our analytic
tools we make detailed calculations for the bisoliton family
trapped due to the harmonic potentglx) = x?/2. For such a
potential the value of y is given by

e A* sinhR
32 cosR’

17)

whereR=\ry/4.

It is straightforward to show that Eq$ll) can be pre-
sented in a standard Hamiltonian form with an explicit ex-
pression for the Hamiltoniatenergy function:

2, o N1
H=p1+p2—§p¢+§U(¢,r)+V(X1)+V(X2). (18

The energy of the stationary state is given by the expression

2 2
1o A

E= 2 T 4cosR’

(19

It should be noted that the energy functional of two solitons
in free space aty,—co tends to a nonzero value, namely,

)\2

Eo()\):_ﬂ-

(20

The properties of the stationary bisoliton solution may be
also analyzed by a variational approach. We choose the trial
unction in the form of the direct sum of two free-space

forces and of mutual repulsion can lead to the existence of 80litons witha relative phase shift:

stationary two-solitoribisoliton) solution of the GP equation

).

Let us suppose that stationary distance between the cen-
ters of solitong <D, whereD is the characteristic length of

the potentialV(x). Near the minimum of the potenti&d,
=V(x)

dv hr
a2

dVv hr

a2 (19

1

PN a)=C coshz, coshz_)’

(21

where a is a variational parameter, corresponding to half
separation between the centers of solitong?
=\ sinhR/8(sinhR—R) is the normalization constantR
=aN/2, andz.=\(x*a)/4. After the substitution of this
trial function Eq.(2) and integration ovex, it is easy to find
the energy functionaE,(a). The condition of extremum

whereh=d?V/dx? atx=Xx,. Then the second equation in the dE,/da=0 yields the transcendental equation for varia-
system(13) is automatically satisfied and the third equationtional parametea.,. Then the value oE,(a.,) can be also

yields

Ju

hr= ? (15)

The linearization of systerill) about the stationary so-

lution ¢= g, X1=—r/2, andx,=r/2 yields
Ap=—0%Ap, AX;=—w?AX, (16)

whereA¢p=d— ¢y, AX;=X;—Xg, Q2=N2U(,r)/8, »?

obtained.

We used both analytical approaches to find the dependen-
cies R(\) and E(\). These dependencies were also com-
pared with the direct numerical results.

It can be seen from Figs. 1 and 2 that for 1 the agree-
ment between the analytical and numerical calculations is
excellent, which supports the validity of both analytical ap-
proaches. In addition, we confirmed dynamical stability of
stationary bisolitons by direct modeling of the GP equation
(1) for few types of the external trapping potentid(x). It
appears that bisolitons may be stable with respect to strong

=2h, andi=1,2. Taking into account Eq10) we can see perturbations.
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15 cases with nonzero potenti®(x) the later scenario takes

place. Thus, the quasiperiodical nonstationary bisoliton
proves to be an unstable formation and decays into two un-
bound interacting solitons.

IV. REDUCED MODEL

Now we pass on to the study of dynamical soliton inter-
actions in an external potential field. For studying this case
we shall transform the system of equatidi8$ into a phe-
nomenological model that will serve our purposes far beyond
the limits of validity of the original equations.

It is well known that although the model of the potential
o o o interaction (10) is derived from the assumption of well-

° 0 2 100 1% separated and slowly moving solitons, it is applicable to the

description of soliton collisions in free space, where it de-

FIG. 1. Dependence of scaled intersoliton distaRaes nonlin-  scribes correctly the spatial displacements and the phase shift
earity parametek. Solid line corresponds to the direct numerical ¢ colliding—that is, spatially overlapping at some time—
results, crosses—to the prediction of VA, filled circles denote thesolitons[lS]. Still the systen8) is unacceptable for descrip-
roots of Eq.(17). tion of the colliding solitons in the presence of the external

potentialV(x) ~ 1. Although during the collision of solitons

Finally we would like to note that we also investigated thewith A>1 their interaction prevails over the external forces,
stability of dynamical(quasiperiodicaltwo-soliton structure,  the alterations of motion of the soliton centers induced by the
which, in contrast tcstationarybisoliton considered above, external potential, albeit small, eventually turn into large cor-
depends on botk andt. This nonstationary soliton solution rections to values of phases and finally violate the conserva-
is well known for the GP equation with(x)=0 (see, e.g., tion of the energy of the system.

Refs. [20,21]). For this integrable case such a solution is  There are two noticeable ways to bypass this difficulty.
periodicin t and may be expressed as a complex fractionairhe first one is to improve the derivation of the system of
structure of hyperbolic and trigonometric functions. Any per-ODE to include terms of higher orders i1 1. Although the
turbation, e.g., higher-order nonlinear correcti¢sse, e.g., way to proceed to higher orders of the perturbation theory is
Ref. [22] for an examplg or nonzeroV(x) will break the  known [19], it does not promise to be effective since the
integrability of free-space GP equation and make the twomain problem is the extrapolation of the equations that are
soliton structure quasiperiodic due to emission of small ampased on the supposition of weak interaction of solitons to
plitude radiation. Note, however, that some perturbationghe domain of strong interaction. We use an alternative ap-
lead to quasistable evolution regini@ow decay of quasip- proach that is described below.
eriodic soliton towards a single stationary soliton as in Ref.  The analysis of systeifi1) shows that for the collision of
[22]), whereas other types of perturbations may lead to fasthe solitons in the free space with relative velocities 1
instability development and split into two nonequal solitonsalmost at any values of the initial phagg apart from some
[23]. Our numerical analysis has shown that in all analyzedsmall interval| | <\ ~2, the phase difference at the mo-
ment of the closest approach of the solitons reaches the value
00 T : : I $=sgn(¢py) . Thus nearly for any initial conditions the in-
B ] teraction of colliding solitons eventually has the character of
strong repulsion.

r \'\K. ] Therefore it is possible to neglect the evolution of the
~200 phase difference altogether, to ascribe the phase the constant
C \‘\ ] value ¢= 7, and to reduce the model to the system with two
E —s00/- ] degrees of freedom with the equations of motion

U, dv

o J X1+ +2—=0
- — X = y
B x ] ! F?X]_ Xm

-800

- \\: au dv

ks

'°°°0 E—— }»‘ e E— X+ %, +2d—X2=0, (22
FIG. 2. Dependence of the bisoliton energyws nonlinearity where

parameteir. Solid line corresponds to the direct numerical results,

crosses—to the prediction of VA& (ae,), filled circles—to the

results of ODE model approximatida+ E, [see Eqs(19),(20)]. U,(r)= U(ﬂ-,r)=)\ze_)‘|r|/4. (23
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4o L L L B B A X2 X4
V(X):—E‘l‘z. (24)

In what follows this case will be the called standard set of
parameters. We note in passing that the properties of solu-
tions of the nonlinear Schrodinger equati@iLS) in the
external double-well potential for moderate values of the
nonlinearity parametex~1, that permit us to use the ap-
proximation of coupled modes, recently became the object of
intensive studies for stationaf9] as well as for nonstation-
ary[10,1]] cases.

B} “ The top and bottom graphs in Fig. 3 were obtained by
N T I ot direct numerical solution of the Eq1), where the initial
-2 -1 0 1 2 conditions (=0) were taken in the form of the direct sum of
two (separatedfree-space single soliton solutiori4). The
corresponding parts of Fig. 3 are contour plots of the soliton
density | /|%; the boundary contours correspond to 40% of
the maximum density. In solving this equation numerically
we have employed the standard split step Fourier or beam
propagation metho(BPM). By using a grid with 512 points,
a transverse step sizx~7.8x10 3, and a propagation step
size 5t=5x% 10" ° the method conserves the ma&3so 10 ©
accuracy. Choosing the mass of the exact one soliton to be
normalized to one fixes the internal soliton parameger
=\?/16. As we wish to consider the case)sf1 and there-
fore largeB, a smallét was chosen to contend with the fast
phase rotation a larg@ causes in the modeling. The middle
graph plotted is the numerical solution of the syst&®).

The comparison of graphs shows that the discrepancies
between the evolution of centers of solitons become notice-
able only after the elapse of considerable amount of time. In
our example, one of the solitons from the pair with= 7
crosses the symmetry line of the potentiat&tl8, whereas
in the pair with¢= /2 it reflects from the central hill of the
potential at this moment. However, for the purposes we are
going to use our systert22) the exact detailed form of the
trajectory is not important; furthermore, in a sense it is inac-
cessible for reasons that are discussed in the following para-
graph.

V. CHAOS AND ENERGY EXCHANGE

The apparent irregularity of motion, which is observable
in Fig. 3, suggests its chaotic character. The reduced system
(22) belongs to the class of Hamiltonian autonomous sys-
tems with two degrees of freedom, with Cartesian coordi-
) . ) . o natesx; andx, and appropriate canonically conjugate mo-

FIG. 3. Dynamics of two interacting solitons within a double menta, that describes motion in some static potential
well potential. Top and bottom figures are contour plots in SOIitonW(xl,xz). Although a member of this class, the famous
amplitude showing the numerical so_Iution of the PR for the Henon-Heiles moddl24], served as the foundation of one of
standard set of parametetsee text with ¢=m/2 andg=m, re- paradigms of modern chaotic dynamics, very little atten-
spectively. The middle figure is the solution of the redugelthse tion (if any) has been paid to systems with a potential of the
independentODE systen(22) with the same initial conditions. The .
bold lines represent the trajectory of the soliton centers. form V(X.l) +V(X.2) +U([x1—xl) that we deal with h(.ere'

Chaotic motion of a system of two particles—
infinitesimal rigid balls—in a uniform gravitational field

In Fig. 3 we plot the motion of two solitons of the system gpove a rigid floor was studied in R¢R5]. The range of the
with the nonlinearity parameter= 100 and the initial con- interaction potential in this model is exactly zero; that leads
ditions x;=0.3, x,=1.0, x;,=0.0, X,=0.6 in the external to essential differences from our case: in particular, the
strongly nonlinear potential of the double well model becomes trivial in the case of equally massive par-
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FIG. 5. Relative autocorrelation function of velocBy( 7). Tri-
angles are the points calculated numerically from sys@2n Solid
line is given by the interpolation formulé6) with the best fit
parameters=0.568 andw=0.710.

FIG. 4. Poincaresection of particle moving in a double well
potential with positionx, and velocityx, at moments when the
other particle is about to enter the right hand weg., x;,=0 and
X;>0).
coordinatesx; andx,. The particles are subjected to an ex-

ticles. Next, the chaotic motion of two interacting particles, -\ potentialV(x,) =V/(x,) and their interaction is de-

was extensively studied in the context of the problem of__ . . _ . . ]
behavior of two particles in a Paul tr4@6—28. However, scribed by the potentidl (|x,—x,|). The interaction poten

. . o tial is assumed to be rapidlie.g., exponentiallyvanishing
this system is usually treated by use of dissipative nonathrOr Ix;—%,|=d and the interaction rangkis assumed to be
nomous models, that differ qualitatively from our case.

To qualify the motion as chaotic, one needs to study th small in comparison with the characteristic len@tof mo-
a ' . . Y N&on in the external potential. Sinak<D, the motion could
evolution of the system for very long times. In Fig. 4 we

lotted the proiection of the phase traiectory with standar e described as independent oscillations of two particles in
pio _proj € p ey y he external potential that are, from time to time, interrupted
initial conditions on the Poincargection. The values of co-

. e . ) by rapid collisions.
ordinatex, and velocityx, of the right particle are taken at " at first let’s consider the collisions in the absence of the
the moments when the left particle had the coordinate external field. The equation of motion for the distance be-
=0 and positive velocityx;>0. It is seen that the trajectory tween the particles=x;—Xx, is
belongs to a chaotic component that covers most of the ac-
cessible phase space. . duU(r)

The Lyapunov exponent was calculated for this com- r=—2—4—" (27)
ponent and was found to ke=0.18+0.01.

In Fig. 5 we plotted the relative autocorrelation function

of velocity v =x of one of the particles,

It has the first integral of enerdf, =r2/2+2U(r).
A guantity that we need for the following is the difference
— 1 of time that is spent by colliding particles in the range of the
B,(7)=v(t+ v (tH)[v?(t)] (25 |engthA>d in the absence of the interactipt) (r)=0] and
. ) . . in its presence. For the interaction rapidly vanishing at large
along with the dependence given by the interpolation fory s gifference has a finite limit foh— = that we shall call
mula the time shiftr.
~ Two cases of collisions must be distinguished. In the first
B,(7)=(1+7)""cogwr). (26)  one the relative distanaechanges its sign during the colli-
sion. ThisT case [ for “transmission”) corresponds to at-

The agreement of numerical points with H@6) strongly  tractive [U(r)<0] or weak repulsivd 0<U(r)<E,/2] in-
implies the power law decay of the correlations. teractions. For thd case

The system of two particles with repulsive interaction

moving in a one-dimensional confining potential resembles »[1 1
the well-known Fermi accelerator—a particle moving in the T:f — = ————dr, (29
one-dimensional box with an oscillating wd9]. In our —=[ U v =4U(r)

case each particle could be viewed as a sort of oscillating

wall with respect to its neighbor. This analogy suggests moravherev = J2E, is the magnitude of the relative velocity of

detailed study of the process of energy exchange. infinitely separated particles. From E@8) it is easy to see
Let's consider a general problem of one-dimensional fi-that 7>0 for attractive and-<<0 for weakly repulsive inter-

nite motion of two particles of equal massas=m,=1 and  actions.
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In the second case the relative distanaetains its sign. posp T T T T ' ]
This R case R for “reflection”) corresponds to the strong o : : . e
repulsive interaction, whek, <max 2J(r). For theR case 000l .

fo 2d fr* 2 g 29 -005[ - 1
T= —dr— ——=——dr, ]
e —e=\Ju?—4U(r) 5 *
E; -0.10 |
where the turning point, is defined by the minimal root of ]
the equatiorv?—4U(r,)=0. For the exponential potential -0a5 [ _
(10) the time shift is e
-0.20] . R
16 A B - =
7= —In—. (30) r ]
Av v -0.25 L P R B T L
0 5 10 15 20

It is positive for smallv, changes its sign at=\A and re-
mains negative to the limit of strong repulsion. This pattern FIG. 6. Time dependence of the energy of solitons at the stan-
of behavior is typical for any repulsive potential with a dard set of parametersee text Scattered small dots are taken
single extremum. We note in passing that for laigeand ~ from the numerical solution of the PD&), with ¢= /2, solid
moderatev <1 the time shiftr is much larger than the col- lines—from the solution of the ODE syste®2), large dots—from
lision time 6, that for the exponential potentiél0) is about ~ the model of rigid rods, E38).
0~16/\v.

Let's denote thgasymptoti¢ values of the partial ener- E; —E, =AE=E, —Ej, (36)
gies of the particle€;(t)=x2/2 before and after the colli-
sion asE; andE;", respectively. In the absence of the ex-
ternal field in theT case the asymptotic values of energy of '

each particle is conserved, AE= EFT. (37)

where

E—E;=0, E;—E,=0, 31 i L
. ! 2 2 @D Equation(37) states that as a result of the collision in the

whereas in theR case the particles exchange their energies accelerating fieldf>0) with 7>0 the left particle(for the
T case—the one that was on the left before the collision
E;—E;=0, E,—E;=0. (32)  receives an additional increment in energy.
The method that we described above is asymptotically
The external potential violates these conservation laws. Thexact in the limit of large\; however, it is insufficiently
description of energy exchange could be simply given withaccurate for the standard set of parameters, that was chosen
the assumption that the external potentias slowly varying  with regard to the possibility of numerical integration of the
in comparison with the interaction potentidl Then in the partial differential equatiotiPDE) (1). In this case the inter-
first approximation the external forces acting on each particlaction ranged=8\"1In(32/\v)~0.4 is not small in com-
might be assumed equal and described by a congtenit  parison with the characteristic length of the potenba¥ 1.
form) force F at the “point” of collision: In five collisions out of six that could be seen in Fig. 3, at the
moments of closest approach, external forces acting on the
particles have different signs. That rules out the applicability
of the approach based on assuming the validity of (88).
Another view on the energy exchange could be derived
With this assumption the equations of motion for the inter-from the observation that the interaction potential(r) in
particle distancer and for the coordinate of the center of Eq.(23) is rather steep, and the interacting particles could be

Ve dV)

dxq dx, (33

masss= (X, +X,)/2 are independent, replaced by rigid rodg¢one-dimensional ballsof radiusd.
The collision of rigid rods in the external potential leads to
. du(r) . the exchange of kinetic energies of the particles. That yields
r=-2 ar s=F, (34
AE=V(x1) = V(x2), (39

and could be integrated. The partial energies of the particles
are now defined ag, (t)=x%2—Fx; . The Eqs.(34) permit where values ofx; are taken at the moment of collision.
I I [ B

us to find the Change of energy induced by the external posince for the collision of r|g|d rods= 2d/r, for the case of

tential. In theT case uniform field Eqgs.(37) and (38) produce the same result
AE=Fd.
E; —E;=AE=E, —E;, (35) In Fig. 6 the values of partial energies of solitons calcu-
lated numerically from the GP equation using the BPM de-
and in theR case scribed earlier are plotted by scattered small points. The Gal-
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ilean invariance of Eq(l) gives “moving” solitons and the coordinatesin the external field demands the development
velocity x; of theith soliton can be calculated as of the analytical model established in Sec. Il to higher orders
of the perturbation theory and remains a challenging prob-
. J Im lem. This derivation would remove the necessity for another
Xi=2-arctan—— |, (39  simplifying assumption used to obtain the moddll),
Rey namely that masses of interacting solit@sare invariant in
at the center of the solitoxj . Then the partial energies were the course of their evolution. In fac.t,.the numgrical solution
of the PDE(1) shows that each collision of solitons leads to

_ 2
calculz_ate(_j afi(t)—xi/ZJfZV(xi). . ._some exchange of masses between them, on the order of
Solid lines show the time dependency of partial e”erg'e%agnitude ofAQ/Q~10"3

of the particles found from the systef22). Large points
indicate values of the partial energy of the most energetic,;
particle calculated from Eq38). The agreement of this es-

Importantly the study of the systef22) revealed a cha-
¢ nature of motion. Although the model belongs to a well-
studied class, it has rather specific features. The specifics of

t|n|1a'Fe with nyrg?znpal E)/aluego(ljs somewhat gua;l;]tat(med | this system partly come from the presence of three charac-
relative error inAE is about 30%, as expected. The model yqyigiic time scales: duration of the particle collisions

of rigid balls is based on the small value of the parameter ~16/\v, time shift 7~16/A\v In(\/v) and a typical time be-
that gives the ratio of average magnitude of the externa,gWeen the collisionsT~2, and, correspondingly, three

forces(|F|) to the maximg_l force of interaction ma/dr. characteristic length scales: soliton widéh-4/\, range of
For the standard condition¢|F|)~0.8 and majdU/dr] interactiond~ 8\ ~ 1 In(2\/v), and characteristic width of the

7201 A _ _
=\/16~6, thuse~0.1. potential wellD~ 1. The theory of the energy exchange be-
tween the solitons colliding in the external field that was
V1. DISCUSSION AND CONCLUSIONS sketched in Sec. V is exact in the limit—o and can be

In this paper, starting from the substitution of two-soliton US€d to study the finalong-term distribution of the partial
solution into Gross-Pitaevskii equatidf), we have found energies of. solltons_ for fixed to.tal value of the energy of the
that if we are interested in the evolution of the spatial posi-SyStém. This work is currently in progress.
tion of solitons in the external potential, the phenomenologi-
cal model with two degrees of freedd@?2) can be used with
reasonably high accuracy. It is instructive that the more ad-
vanced system with three degrees of freedd), which The authors appreciate valuable discussions with Yu. S.
works perfectly well for analysis of multisoliton stationary Kivshar, B. A. Malomed, E. A. Ostrovskaya, N. Robins, H.
structures and their stability, becomes inadequate in descritsidhu, and D. V. Skryabin. They also acknowledge support
ing the long-term soliton interaction dynamic. This some-from the Australian Research Council. One of the authors
what paradoxical situation could be explained by the level of P.V.E) also acknowledges support from the education and
approximation: the equations of motion that we used havecience center “Fundamental Optics and Spectroscdjy”
ignored the modification of the evolution of phases by thethe frame of the program “Integration” of Russian Federa-
external potential. The derivation of equations that will betion) and by the Russian Federal Grant No. 96-15-96476 for
able to describe the evolution of soliton phasas well as  the support of outstanding scientific schools.
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