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Interaction of two one-dimensional Bose-Einstein solitons: Chaos and energy exchange
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We analyze the bright soliton interactions of a Bose-Einstein condensate in quasi-one-dimensional traps
putting an emphasis on integrability break down due to a trapping potential. In particular, we derive a simple
analytical model, which describes well all major features of soliton dynamics including chaos and energy
exchange between interacting solitons induced by the trapping potential.
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I. INTRODUCTION

Bose-Einstein condensation~BEC! was first observed in
1995 in a series of remarkable experiments on vapors
rubidium @1# and sodium@2#. Later BEC of lithium@3# and
hydrogen@4# was also demonstrated. These discoveries
tiated an avalanche of further works dealing both with e
perimental and theoretical aspects of BEC~see the recen
review @5#!. Soon after the first experimental observations
the BEC phenomenon it was realized that coherent dynam
of the condensate wave function may lead to the forma
of bright @6#, dark@7#, and vortex@8# solitons—self-localized
formations of increased~bright! or decreased~dark or vortex!
wave function density.

However, theoretical studies of soliton dynamics in BE
were usually limited to investigation of single soliton evol
tion under the influence of external fields and perturbati
~see, e.g., Ref.@6#! or to analysis of weakly nonlinear~low
BEC density! case where generalized versions of the st
dard linear coupled-mode theory hold~see, e.g.,@9,10#!. We
would like to go far beyond this analysis and present a c
sistent analytical approach for studying long-term evolut
of interacting solitons in dense~strongly nonlinear! conden-
sates. In this paper we start with the simplest case of o
dimensional bright BEC solitons, developing a full-sca
analytic model and comparing its predictions with direct n
merical modeling. In particular, we discover the existence
stable two-soliton bound states~bisolitons! and observe dy-
namical chaos caused solely by soliton interactions in a
tionary trap.

The rest of the paper is organized as follows: in Sec. II
start with the Gross-Pitaevskii equation and derive a sol
interaction ordinary differential equation~ODE! system; in
Sec. III we investigate the static properties and stability
stationary bisoliton states; in Sec. IV we suggest the mo
fied ODE system to describe the long-term dynamics of
teracting~colliding! solitons; in Sec. V this model is used t
quantify the energy exchange between the colliding solit
and subsequent development of chaos; finally, Sec. VI c
tains conclusions and discussion.

II. BASIC MODEL

We consider the macroscopic dynamics of BEC in
strongly anisotropic trapping potentialṼ5Ṽ(x,y/m,z/m),
1063-651X/2001/64~1!/016607~9!/$20.00 64 0166
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where m!1 is the anisotropy parameter. Such a poten
forms a cigar-shaped trap oriented along thex direction. In
this case the collective dynamics may be described by
one-dimensional Gross-Pitaevskii~GP! equation. Details of
the derivation and normalization are very similar to th
found in Ref.@6#. The ~111!-dimensional macroscopic dy
namics of the condensate wave function is governed by
equation:

i
]c

]t
1

]2c

]x2
1lucu2c2V~x!c50, ~1!

where the nonlinearity parameterl is defined asl5
22Na al /a0

2. In this definitionN is the number of particles
trapped in a BEC state,a is the ground state scatterin
length, a0 and al are condensate sizes~without self-
interaction! in transverse (y,z) and longitudinal (x) direc-
tions, respectively.@The transverse directionsy and z have
been integrated out in obtaining the GP equation~1!.# The
parameterl is positive for condensates with self-attractio
~negative scattering length; this regime was observed
BEC in lithium @12#!. The specific form of trapping potentia
V(x) depends on the details of the experimental setup.

We note that for validity of the quasi-one-dimension
approximation~1!, the conditiona0Aal /A8pNuau.a0 ~i.e.,
healing length is larger than the transverse size of the t!
should be satisfied. Taking this requirement into account
choosing sample parameter values asa521.45 nm~as for
7Li) and a051.0 mm, we estimate the physical range of o
nonlinear parameter asl.7.031025N2. We note that, in
principle, there are two ways to reduce the effective value
l to relatively small valuesulu;1: ~i! using a magnetic-
field-induced Feshbach resonance technique of Ref.@13# to
reduce the scattering length parametera or ~ii ! simply work-
ing with very low BEC densities~small numberN of trapped
atoms in a BEC state!. However for typical BEC experi-
ments (a;1.0 nm, N.103) the nonlinear parameter i
large (l;1022104).

Although Eq. ~1! is not integrable analytically, it pos
sesses two important integrals of motion, which we will re
to asenergy:

E5E
2`

` H U ]c

]x U21V~x!ucu22
1

2
lucu4J dx, ~2!
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andmass:

Q5E
2`

`

ucu2 dx. ~3!

Equation ~1! without an external potential@i.e., for V(x)
[0# is an integrable model@14# and its one-soliton solution
may be presented in the form,

c~x,t !5c̃~x2Ct,t !eibt, ~4!

whereC andb are soliton velocity and energy level, respe
tively, and complexstationary, i.e., t independent, one
soliton solutionsc̃ are given by

c̃~b,C,x̃!5
A2b̃

Al
sech~Ab̃ x̃!eiCx̃/2, ~5!

where b̃[b2C2/4, x̃[x2Ct. If l@1, solitons given by
Eqs. ~5! can be used as a initial conditions in numeric
analysis of soliton collisions and as zero-order approxim
tions for construction of asymptotic interaction theory. In t
analysis below, we chooseb̃5l2/16 effectively normalizing
the mass invariant~3! to unity for a single soliton~4!. Note,
that the total mass value may be different fromQ51 if we
have more than one single soliton, e.g., it takes the va
Q52 for a bisoliton analyzed in the next section.

Using the methods of Ref.@15# we can derive a genera
system of ODEs for the soliton parameters, describing
adiabatic interaction of two almost identical BEC solitons
an external trap. This is based on two major assumptions
~i! the relative distancer between solitons is large in com
parison to their size (r @1/l, the approximation of well-
separated solitons! and ~ii ! relative soliton velocityDC
[C22C1 is small (DC!1). Below we give an outline of
the derivation procedure omitting the technical details~for a
similar detailed derivation see, e.g., Ref.@16#!. An alterna-
tive approach to the description of soliton interaction w
used in Ref.@17#.

We take two well-separated one-soliton solutions of E
~1! as the zeroth approximation of a nonstationary tw
soliton solution. In other words we look for a solution of E
~1! in the form

c[c11c25c̃1~x2x1 ,T!exp~ if1!

1c̃2~x2x2 ,T!exp~ if2!, ~6!

where subscripts 1 and 2 refer to first and second sol
respectively,T[«t («!1), andf i andxi are soliton phases
and center positions given by

f i5E
0

T

b i~T8!dT81f i
(0) ,

xi5E
0

T

Ci~T8!dT81xi
(0) , ~7!
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wherei 51,2, andf i
(0) andxi

(0) are constants that define th
initial soliton positions and phases. Note that we allow
internal parameters of both solitons~i.e., b1 , b2 , C1, and
C2) to depend on aslow variableT. Then we look for an
asymptotic two-soliton solution of Eq.~1! in the form of an
infinite series with « being a small parameter of th
asymptotic procedure. This approach is self-consistent o
if certain compatibility conditions are satisfied. These co
patibility conditions lead to a system of ordinary differenti
equations that is much simpler than the original model~1!,
but is still too complex to provide immediate physical i
sight. However, this system can be simplified further us
additional assumptions.

Let us considertwo almost identical solitons, which also
have opposite initial velocities. In other words, initiallyC1
52C2. Using these assumptions we can obtain the follo
ing analytical system for adiabatically changing soliton p
rameters:

22
]Q1

]b1
f̈11

]U

]f1
50,

22
]Q2

]b2
f̈21

]U

]f2
50,

Q1ẍ11
]U

]x1
12Q1

dV~x1!

dx1
50, ~8!

Q2ẍ21
]U

]x2
12Q2

dV~x2!

dx2
50,

wheref j (t) andxj (t) denote soliton phases and center p
sitions and the potentialU can be written in terms of soliton
overlap integrals as

U522l cosf ReE
2`

`

~ uc̃1u2c̃1c̃2* 1uc̃2u2c̃2c̃1* !dx,

~9!

wheref[f22f1 is the phase difference between two so
tons. In the following we will use the normalization cond
tions Q15Q2[1 (b15b25l2/16). Then the potentialU
may be approximated as

U~f,r !52l2 cosf e2lur u/4, ~10!

wherer[x22x1.
System~8! may be simplified further by the standard e

change of absolute phase variablesf i for a relative phase
variablef:

Mff̈1
]U

]f
50,

Mxẍ11
]U

]x1
12Mx

dV

dx1
50, ~11!
7-2
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Mxẍ21
]U

]x2
12Mx

dV

dx2
50,

where the ‘‘phase mass’’Mf is defined by the equation

22Mf
215S ]Q1

]b1
D 21

1S ]Q2

]b2
D 21

. ~12!

Taking into account the normalization we haveMx5Q1
5Q251 andMf528/l2.

III. STATIONARY BISOLITON

First, we investigate the stationary case considering
solitons with equal amplitudes~and masses!. As follows
from system~11! a stationary solution requires the followin
conditions to be satisfied

]U

]f
50,

dV

dx1
1

dV

dx2
50, ~13!

dV

dx1
2

dV

dx2
5

]U

]r
.

From the first of these equations and Eq.~10! it is easy to
find the stationary values of phase differencef050,p. The
interaction of solitons is attractive forf050 and repulsive
for f05p. System~13! has no solutions forV(x)[0; there-
fore two interacting solitons cannot form a stationary so
tion of the GP equation in free space@18#. However, in the
presence of a confining potential the balance of exte
forces and of mutual repulsion can lead to the existence
stationary two-soliton~bisoliton! solution of the GP equation
~1!.

Let us suppose that stationary distance between the
ters of solitonsr 0!D, whereD is the characteristic length o
the potentialV(x). Near the minimum of the potentialVmin
5V(x0)

dV

dx1
'2

hr

2
,

dV

dx2
'

hr

2
, ~14!

whereh5d2V/dx2 at x5x0. Then the second equation in th
system~13! is automatically satisfied and the third equati
yields

hr52
]U

]r
. ~15!

The linearization of system~11! about the stationary so
lution f5f0 , x152r 0/2, andx25r 0/2 yields

Df̈52V2Df, D ẍi52v2Dxi , ~16!

whereDf5f2f0 , Dxi5xi2x0 , V25l2U(f0 ,r 0)/8, v2

52h, and i 51,2. Taking into account Eq.~10! we can see
01660
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that for f5p and for a potential with a minimum (h.0)
bisoliton state is always stable. Quantitative details of s
tionary bisoliton structure may be also obtained using
system~11!. To demonstrate the effectiveness of our analy
tools we make detailed calculations for the bisoliton fam
trapped due to the harmonic potentialV(x)5x2/2. For such a
potential the value ofr 0 is given by

R5
l4

32

sinhR

cosh2 R
, ~17!

whereR5lr 0/4.
It is straightforward to show that Eqs.~11! can be pre-

sented in a standard Hamiltonian form with an explicit e
pression for the Hamiltonian~energy! function:

H5p1
21p2

22
l2

8
pf

2 1
1

2
U~f,r !1V~x1!1V~x2!. ~18!

The energy of the stationary state is given by the expres

E5
r 0

2

4
1

l2

4 coshR
. ~19!

It should be noted that the energy functional of two solito
in free space atr 0→` tends to a nonzero value, namely,

E0~l!52
l2

24
. ~20!

The properties of the stationary bisoliton solution may
also analyzed by a variational approach. We choose the
function in the form of the direct sum of two free-spa
solitons withp relative phase shift:

F~x,l;a!5CS 1

coshz1
2

1

coshz2
D , ~21!

where a is a variational parameter, corresponding to h
separation between the centers of solitons,C2

5l sinhR/8(sinhR2R) is the normalization constant,R
5al/2, and z65l(x6a)/4. After the substitution of this
trial function Eq.~2! and integration overx, it is easy to find
the energy functionalEv(a). The condition of extremum
dEv /da50 yields the transcendental equation for var
tional parameteraex . Then the value ofEv(aex) can be also
obtained.

We used both analytical approaches to find the depend
cies R(l) and E(l). These dependencies were also co
pared with the direct numerical results.

It can be seen from Figs. 1 and 2 that forl@1 the agree-
ment between the analytical and numerical calculations
excellent, which supports the validity of both analytical a
proaches. In addition, we confirmed dynamical stability
stationary bisolitons by direct modeling of the GP equat
~1! for few types of the external trapping potentialV(x). It
appears that bisolitons may be stable with respect to str
perturbations.
7-3
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Finally we would like to note that we also investigated t
stability of dynamical~quasiperiodical! two-soliton structure,
which, in contrast tostationarybisoliton considered above
depends on bothx and t. This nonstationary soliton solutio
is well known for the GP equation withV(x)[0 ~see, e.g.,
Refs. @20,21#!. For this integrable case such a solution
periodic in t and may be expressed as a complex fractio
structure of hyperbolic and trigonometric functions. Any pe
turbation, e.g., higher-order nonlinear corrections~see, e.g.,
Ref. @22# for an example! or nonzeroV(x) will break the
integrability of free-space GP equation and make the tw
soliton structure quasiperiodic due to emission of small a
plitude radiation. Note, however, that some perturbatio
lead to quasistable evolution regime~slow decay of quasip-
eriodic soliton towards a single stationary soliton as in R
@22#!, whereas other types of perturbations may lead to
instability development and split into two nonequal solito
@23#. Our numerical analysis has shown that in all analyz

FIG. 1. Dependence of scaled intersoliton distanceR vs nonlin-
earity parameterl. Solid line corresponds to the direct numeric
results, crosses—to the prediction of VA, filled circles denote
roots of Eq.~17!.

FIG. 2. Dependence of the bisoliton energyE vs nonlinearity
parameterl. Solid line corresponds to the direct numerical resu
crosses—to the prediction of VAEv(aex), filled circles—to the
results of ODE model approximationE1E0 @see Eqs.~19!,~20!#.
01660
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cases with nonzero potentialV(x) the later scenario take
place. Thus, the quasiperiodical nonstationary bisoli
proves to be an unstable formation and decays into two
bound interacting solitons.

IV. REDUCED MODEL

Now we pass on to the study of dynamical soliton inte
actions in an external potential field. For studying this ca
we shall transform the system of equations~8! into a phe-
nomenological model that will serve our purposes far beyo
the limits of validity of the original equations.

It is well known that although the model of the potenti
interaction ~10! is derived from the assumption of wel
separated and slowly moving solitons, it is applicable to
description of soliton collisions in free space, where it d
scribes correctly the spatial displacements and the phase
of colliding—that is, spatially overlapping at some time—
solitons@15#. Still the system~8! is unacceptable for descrip
tion of the colliding solitons in the presence of the extern
potentialV(x);1. Although during the collision of solitons
with l@1 their interaction prevails over the external force
the alterations of motion of the soliton centers induced by
external potential, albeit small, eventually turn into large c
rections to values of phases and finally violate the conse
tion of the energy of the system.

There are two noticeable ways to bypass this difficul
The first one is to improve the derivation of the system
ODE to include terms of higher orders inl21. Although the
way to proceed to higher orders of the perturbation theor
known @19#, it does not promise to be effective since th
main problem is the extrapolation of the equations that
based on the supposition of weak interaction of solitons
the domain of strong interaction. We use an alternative
proach that is described below.

The analysis of system~11! shows that for the collision of
the solitons in the free space with relative velocitiesv;1
almost at any values of the initial phasef0 apart from some
small intervaluf0u&l22, the phase differencef at the mo-
ment of the closest approach of the solitons reaches the v
f5sgn(f0)p. Thus nearly for any initial conditions the in
teraction of colliding solitons eventually has the character
strong repulsion.

Therefore it is possible to neglect the evolution of t
phase difference altogether, to ascribe the phase the con
valuef5p, and to reduce the model to the system with tw
degrees of freedom with the equations of motion

ẍ11
]Up

]x1
12

dV

dx1
50,

ẍ21
]Up

]x2
12

dV

dx2
50, ~22!

where

Up~r !5U~p,r !5l2e2lur u/4. ~23!

e

,
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In Fig. 3 we plot the motion of two solitons of the syste
with the nonlinearity parameterl5100 and the initial con-
ditions x150.3, x251.0, ẋ150.0, ẋ250.6 in the external
strongly nonlinear potential of the double well

FIG. 3. Dynamics of two interacting solitons within a doub
well potential. Top and bottom figures are contour plots in soli
amplitude showing the numerical solution of the PDE~1! for the
standard set of parameters~see text! with f5p/2 andf5p, re-
spectively. The middle figure is the solution of the reduced~phase
independent! ODE system~22! with the same initial conditions. The
bold lines represent the trajectory of the soliton centers.
01660
V~x!52
x2

2
1

x4

4
. ~24!

In what follows this case will be the called standard set
parameters. We note in passing that the properties of s
tions of the nonlinear Schrodinger equation~NLS! in the
external double-well potential for moderate values of t
nonlinearity parameterl;1, that permit us to use the ap
proximation of coupled modes, recently became the objec
intensive studies for stationary@9# as well as for nonstation
ary @10,11# cases.

The top and bottom graphs in Fig. 3 were obtained
direct numerical solution of the Eq.~1!, where the initial
conditions (t50) were taken in the form of the direct sum o
two ~separated! free-space single soliton solutions~4!. The
corresponding parts of Fig. 3 are contour plots of the soli
density ucu2; the boundary contours correspond to 40%
the maximum density. In solving this equation numerica
we have employed the standard split step Fourier or be
propagation method~BPM!. By using a grid with 512 points
a transverse step sizedx'7.831023, and a propagation ste
sizedt5531026 the method conserves the massQ to 1026

accuracy. Choosing the mass of the exact one soliton to
normalized to one fixes the internal soliton parameterb
5l2/16. As we wish to consider the case ofl@1 and there-
fore largeb, a smalldt was chosen to contend with the fa
phase rotation a largeb causes in the modeling. The midd
graph plotted is the numerical solution of the system~22!.

The comparison of graphs shows that the discrepan
between the evolution of centers of solitons become not
able only after the elapse of considerable amount of time
our example, one of the solitons from the pair withf5p
crosses the symmetry line of the potential att518, whereas
in the pair withf5p/2 it reflects from the central hill of the
potential at this moment. However, for the purposes we
going to use our system~22! the exact detailed form of the
trajectory is not important; furthermore, in a sense it is ina
cessible for reasons that are discussed in the following p
graph.

V. CHAOS AND ENERGY EXCHANGE

The apparent irregularity of motion, which is observab
in Fig. 3, suggests its chaotic character. The reduced sys
~22! belongs to the class of Hamiltonian autonomous s
tems with two degrees of freedom, with Cartesian coor
natesx1 and x2 and appropriate canonically conjugate m
menta, that describes motion in some static poten
W(x1 ,x2). Although a member of this class, the famo
Henon-Heiles model@24#, served as the foundation of one o
the paradigms of modern chaotic dynamics, very little att
tion ~if any! has been paid to systems with a potential of t
form V(x1)1V(x2)1U(ux12x2u) that we deal with here.

Chaotic motion of a system of two particles—
infinitesimal rigid balls—in a uniform gravitational field
above a rigid floor was studied in Ref.@25#. The range of the
interaction potential in this model is exactly zero; that lea
to essential differences from our case: in particular,
model becomes trivial in the case of equally massive p
7-5
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ticles. Next, the chaotic motion of two interacting particl
was extensively studied in the context of the problem
behavior of two particles in a Paul trap@26–28#. However,
this system is usually treated by use of dissipative nona
nomous models, that differ qualitatively from our case.

To qualify the motion as chaotic, one needs to study
evolution of the system for very long times. In Fig. 4 w
plotted the projection of the phase trajectory with stand
initial conditions on the Poincare´ section. The values of co
ordinatex2 and velocityẋ2 of the right particle are taken a
the moments when the left particle had the coordinatex1

50 and positive velocity,ẋ1.0. It is seen that the trajector
belongs to a chaotic component that covers most of the
cessible phase space.

The Lyapunov exponents was calculated for this com
ponent and was found to bes50.1860.01.

In Fig. 5 we plotted the relative autocorrelation functio
of velocity v5 ẋ of one of the particles,

Bv~t!5v~ t1t!v~ t !@v2~ t !#21 ~25!

along with the dependence given by the interpolation f
mula

B̃v~t!5~11t!2n cos~vt!. ~26!

The agreement of numerical points with Eq.~26! strongly
implies the power law decay of the correlations.

The system of two particles with repulsive interacti
moving in a one-dimensional confining potential resemb
the well-known Fermi accelerator—a particle moving in t
one-dimensional box with an oscillating wall@29#. In our
case each particle could be viewed as a sort of oscilla
wall with respect to its neighbor. This analogy suggests m
detailed study of the process of energy exchange.

Let’s consider a general problem of one-dimensional
nite motion of two particles of equal massesm15m251 and

FIG. 4. Poincare´ section of particle moving in a double we

potential with positionx2 and velocity ẋ2 at moments when the
other particle is about to enter the right hand well~i.e., x150 and

ẋ1.0).
01660
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coordinatesx1 andx2. The particles are subjected to an e
ternal potentialV(x1)5V(x2) and their interaction is de
scribed by the potentialU(ux12x2u). The interaction poten-
tial is assumed to be rapidly~e.g., exponentially! vanishing
for ux12x2u*d and the interaction ranged is assumed to be
small in comparison with the characteristic lengthD of mo-
tion in the external potential. Sinced!D, the motion could
be described as independent oscillations of two particle
the external potential that are, from time to time, interrup
by rapid collisions.

At first let’s consider the collisions in the absence of t
external field. The equation of motion for the distance b
tween the particlesr 5x12x2 is

r̈ 522
dU~r !

dr
. ~27!

It has the first integral of energyEr5 ṙ 2/212U(r ).
A quantity that we need for the following is the differenc

of time that is spent by colliding particles in the range of t
lengthA@d in the absence of the interaction@U(r )[0# and
in its presence. For the interaction rapidly vanishing at la
r this difference has a finite limit forA→` that we shall call
the time shiftt.

Two cases of collisions must be distinguished. In the fi
one the relative distancer changes its sign during the colli
sion. ThisT case (T for ‘‘transmission’’! corresponds to at-
tractive @U(r ),0# or weak repulsive@0,U(r ),Er /2# in-
teractions. For theT case

t5E
2`

` F1

v
2

1

Av224U~r !
Gdr, ~28!

wherev5A2Er is the magnitude of the relative velocity o
infinitely separated particles. From Eq.~28! it is easy to see
that t.0 for attractive andt,0 for weakly repulsive inter-
actions.

FIG. 5. Relative autocorrelation function of velocityBv(t). Tri-
angles are the points calculated numerically from system~22!. Solid
line is given by the interpolation formula~26! with the best fit
parametersn50.568 andv50.710.
7-6
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In the second case the relative distancer retains its sign.
This R case (R for ‘‘reflection’’ ! corresponds to the stron
repulsive interaction, whenEr,max 2U(r). For theR case

t5E
2`

0 2

v
dr2E

2`

r
* 2

Av224U~r !
dr, ~29!

where the turning pointr * is defined by the minimal root o
the equationv224U(r * )50. For the exponential potentia
~10! the time shift is

t5
16

lv
ln

l

v
. ~30!

It is positive for smallv, changes its sign atv5l and re-
mains negative to the limit of strong repulsion. This patte
of behavior is typical for any repulsive potential with
single extremum. We note in passing that for largel and
moderatev&1 the time shiftt is much larger than the col
lision time u, that for the exponential potential~10! is about
u;16/lv.

Let’s denote the~asymptotic! values of the partial ener
gies of the particlesEi(t)5 ẋi

2/2 before and after the colli
sion asEi

2 and Ei
1, respectively. In the absence of the e

ternal field in theT case the asymptotic values of energy
each particle is conserved,

E1
12E1

250, E2
12E2

250, ~31!

whereas in theR case the particles exchange their energi

E2
12E1

250, E2
22E1

150. ~32!

The external potential violates these conservation laws.
description of energy exchange could be simply given w
the assumption that the external potentialV is slowly varying
in comparison with the interaction potentialU. Then in the
first approximation the external forces acting on each part
might be assumed equal and described by a constant~uni-
form! force F at the ‘‘point’’ of collision:

2
dV~x1!

dx1
.2

dV~x2!

dx2
.F. ~33!

With this assumption the equations of motion for the int
particle distancer and for the coordinate of the center
masss5(x11x2)/2 are independent,

r̈ 522
dU~r !

dr
, s̈5F, ~34!

and could be integrated. The partial energies of the parti
are now defined asEi(t)5 ẋi

2/22Fxi . The Eqs.~34! permit
us to find the change of energy induced by the external
tential. In theT case

E1
12E1

25DE5E2
22E2

1 , ~35!

and in theR case
01660
n

f

,

e
h

le

-

es

o-

E1
22E2

15DE5E2
22E1

1 , ~36!

where

DE5
ṙ

2
Ft. ~37!

Equation~37! states that as a result of the collision in th
accelerating field (F.0) with t.0 the left particle~for the
T case—the one that was on the left before the collisi!
receives an additional increment in energy.

The method that we described above is asymptotic
exact in the limit of largel; however, it is insufficiently
accurate for the standard set of parameters, that was ch
with regard to the possibility of numerical integration of th
partial differential equation~PDE! ~1!. In this case the inter-
action ranged58l21 ln(32/lv)'0.4 is not small in com-
parison with the characteristic length of the potentialD'1.
In five collisions out of six that could be seen in Fig. 3, at t
moments of closest approach, external forces acting on
particles have different signs. That rules out the applicabi
of the approach based on assuming the validity of Eq.~33!.

Another view on the energy exchange could be deriv
from the observation that the interaction potentialUp(r ) in
Eq. ~23! is rather steep, and the interacting particles could
replaced by rigid rods~one-dimensional balls! of radiusd.
The collision of rigid rods in the external potential leads
the exchange of kinetic energies of the particles. That yie

DE5V~x1!2V~x2!, ~38!

where values ofxi are taken at the moment of collision
Since for the collision of rigid rodst52d/ ṙ , for the case of
uniform field Eqs.~37! and ~38! produce the same resu
DE5Fd.

In Fig. 6 the values of partial energies of solitons calc
lated numerically from the GP equation using the BPM d
scribed earlier are plotted by scattered small points. The G

FIG. 6. Time dependence of the energy of solitons at the s
dard set of parameters~see text!. Scattered small dots are take
from the numerical solution of the PDE~1!, with f5p/2, solid
lines—from the solution of the ODE system~22!, large dots—from
the model of rigid rods, Eq.~38!.
7-7
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ilean invariance of Eq.~1! gives ‘‘moving’’ solitons and the
velocity ẋi of the i th soliton can be calculated as

ẋi52
]

]x H arctanF Im c̃

Rec̃
G J , ~39!

at the center of the solitonxi . Then the partial energies wer
calculated asEi(t)5 ẋi

2/212V(xi).
Solid lines show the time dependency of partial energ

of the particles found from the system~22!. Large points
indicate values of the partial energy of the most energ
particle calculated from Eq.~38!. The agreement of this es
timate with numerical values is somewhat qualitative~the
relative error inDE is about 30%!, as expected. The mode
of rigid balls is based on the small value of the parametee
that gives the ratio of average magnitude of the exter
forces^uFu& to the maximal force of interaction maxudU/dru.
For the standard conditionŝuFu&'0.8 and maxudU/dru
5lv2/16'6, thuse;0.1.

VI. DISCUSSION AND CONCLUSIONS

In this paper, starting from the substitution of two-solito
solution into Gross-Pitaevskii equation~1!, we have found
that if we are interested in the evolution of the spatial po
tion of solitons in the external potential, the phenomenolo
cal model with two degrees of freedom~22! can be used with
reasonably high accuracy. It is instructive that the more
vanced system with three degrees of freedom~11!, which
works perfectly well for analysis of multisoliton stationa
structures and their stability, becomes inadequate in des
ing the long-term soliton interaction dynamic. This som
what paradoxical situation could be explained by the leve
approximation: the equations of motion that we used h
ignored the modification of the evolution of phases by
external potential. The derivation of equations that will
able to describe the evolution of soliton phases~as well as
an

n,

ys

.

v.

. A

g

ys

01660
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ib-
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f
e
e

coordinates! in the external field demands the developme
of the analytical model established in Sec. II to higher ord
of the perturbation theory and remains a challenging pr
lem. This derivation would remove the necessity for anot
simplifying assumption used to obtain the model~11!,
namely that masses of interacting solitonsQi are invariant in
the course of their evolution. In fact, the numerical soluti
of the PDE~1! shows that each collision of solitons leads
some exchange of masses between them, on the orde
magnitude ofDQ/Q;1023.

Importantly the study of the system~22! revealed a cha-
otic nature of motion. Although the model belongs to a we
studied class, it has rather specific features. The specific
this system partly come from the presence of three cha
teristic time scales: duration of the particle collisionsu
;16/lv, time shift t;16/lv ln(l/v) and a typical time be-
tween the collisionsT;2p, and, correspondingly, thre
characteristic length scales: soliton widthd;4/l, range of
interactiond'8l21 ln(2l/v), and characteristic width of the
potential wellD;1. The theory of the energy exchange b
tween the solitons colliding in the external field that w
sketched in Sec. V is exact in the limitl→` and can be
used to study the final~long-term! distribution of the partial
energies of solitons for fixed total value of the energy of t
system. This work is currently in progress.
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