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Abstract

In this work we demonstrate how the extension of the Evans function method using the compound matrix
approach can be implemented to undertake the stability analysis (normally done through numerical means) o
nonlinear travelling waves. The main advantage of this approach is that it can easily overcome the stiffness whict
is normally associated with these kinds of problems. We present a general approach which allows this method t«
be used for a general class of nonlinear travelling wave problems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the stability of a travelling wave is considered. Linearization about the travelling wave
often results in the following linear stability problem:

Zg = A(E, ANz, (1)

wherez is ann dimensional vector representing the linear perturba#oiis ann x n matrix whose
entries are functions of the coordindteand parameters. The physical background of the problems
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usually requires the coordinates of vecimto decay exponentially as — +oo. Examples of such
behaviour can be found in many physical, chemical and biological phenomena, modelled by nonlinear
Partial Differential Equations (PDESs) exhibiting travelling wave solutions, such as combustion waves,
optical solitons, chemical reactions, propagation of dominant genes and nerve gwdes¢r this

reason it is useful to define the limit problems as

ze = ALz, )
where
+ _ .
AT (L) _éﬂnjgooA(g,/\). €))

The properties of Eq2) are used in order to define the boundary conditionsXpexplicitly. Suppose
that n is an even number and matrics" haven/2 eigenvalues with positive real parts and2
eigenvalues with negative real parts so that

Reyf—L >0 forl<i<n/2,
' (4)

Reuf <0 forn/2<i <n,
and

Re + .

eu; <Rep, for 1<i<n (5)

Let us define the corresponding eigenvectoré&fésln this case 1) hasn/2 solutions bounded for
& — —oo and satisfying

ki = Sﬂ)rl]ooe_”i_szi &), 1<i=<n/2 (6)

andn/2 solutions bounded far — 4o0 and satisfying

ki = lim e™éz&), n/2<i<n. ()
§—>+o00

The assumption that the limit matricés" and A~ defined in Egs.) and @) have dimensions
which are even numbers and have exagtly n/2 eigenvalues with positive real parts is taken for the
sake of simplicity. Although for many problems described by a system of PDEs of the second order such
as the propagation of combustion waves4hthis is certainly the casen(is even andp = n/2), for
other problems like the KdV-Burgers equatid] (which is a PDE of the third order, so = 3) the
above assumption does not hold. It will be seen later on that the algorithm proposed in this work applies
for the general case of arbitranyand p.

In order to investigate the linear stability of the travelling waves the solutions have to be found, which
can often only be done numerically. However direct numerical integratioh) dinds only solutions,
andz, corresponding to the maximum rate of exponential gromhanduf as we integrate forwards
from —oo to 0 or backwards fromo to O (strictly speaking we integrate fromL 1 to 0 and fromL» to O
wherelL 1 » are large positive numbers). This is due to the stiffnesd)ofsee #] and references therein
for the detailed description). In order to find other solutionsfér i # 1, n) some orthogonalization
procedure has to be introduced. One way to determine these solutions is to use the compound matrix
method p—7].

The compound matrix method was used36] to integrate the Orr—Sommerfeld equation which is a
fourth-order differential equation (therefore it can be represented just as a system of four differential
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equations of first order). The Orr—Sommerfeld equation is an important equation in the area of
hydrodynamics 7). It is also an example of a stiff equation which requires orthogonalization to be
undertaken to maintain the linear independence of the solutions. At present the compound matrix metho
is widely used to calculate the Evans functidr8], which is now a standard tool in spectral theory for
calculating the unstable eigenvalues of the linear differential operators. There are explicit algorithms for
implementing the compound matrix method for the syst&mHowever this approach is restricted by

the number of governing equations; that is, the number of equations must be less tHa6] skigre

we generalize this approach for systems containing an arbitrary number of equations. We describe ou
generalized approach in the next section.

2. Compound matrix method

Following [8] we use the exterior algebra formalisi®] which allows us to present the results in a
more compact form compared to that 6fq].

According to the compound matrix method, in order to fme C" instead of integrating the EqL)
subject to the boundary conditior®) @nd (7) n times, the linear stability problemi) is considered in
the space op-vectorszy Az, A --- Azp € AP(C"), wheren represents the wedge produgt?(C") is
the p-th exterior power of the vector spa€8 (wherep = n/2 in our case). The properties pf°(C")

are described ing). In particular, it is shown that ifg },i = 1,...,n, is the orthonormal basis i@",
then
gj=emA 8@ A A€, 1<i@<i@<---<ik=<n (8)
form an orthonormal basis in the spacemtectors of a dimension given as
. P, n n!
dim CH= —. 9
AN
It can be shown§] that thep-vectorsv = z; A 2, A - - - A Zp satisfy the equations
Ve = B(&, M)V, (10)
whereB is the induced matrix. The induced boundary conditions are given as
ki A---Aky = lim eS¢ 11
1 A AK g-@ooe v(§), (11)
instead of 6) and
. _ gt
Ko Ao Ak = lim e v(e), (12)

instead of 7). Heres™ = uy +---+pup > 0ands™ = u++1+- -+ puif < 0. Thep-vectorv satisfying
the Eq. (0) and boundary conditiond.{) represents the subspace of solutigné =1, ..., p) of the
linear stability problemX) bounded fo& — —oo and satisfying®). Similarly, the p-vectorv satisfying
Eq. (L0) and boundary condition4d 2) represents the subspace of solutigh6 = p+ 1, ..., n) of the
linear stability problem) bounded fort — oo and satisfying 7). Therefore to find the subspace of
(1) solutions bounded faf — —oo we integrate 10) subject to {1) from —oo to 0. In other words we
have to find a single solution oflQ) which corresponds to the largest rate of exponential grosvth,
when integrating forward from-oco as shown in4]. This can always be done numerically by using the
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Table 1

Structure of set§i (1), ..., i(p)}and{jQ,..., j (p)} in the case of a single different numbek) # j (k)
k—1 k k+1
ikk—1 i (k) i(k+1)
i(k—1) j (k) i(k+1)

technique introduced irlp]. Similarly, to determine the space of solutions 1®)bounded fo — oo
and satisfyingT), Eqg. (L0) are integrated backward fromo to O subject to12).
In order to investigate the stability of the solution it is sufficient to find two solutiond@fgté = 0,
the first solution subject to initial conditiori{) and the second subject to initial conditiat?). Then
the Evans function is constructed and the linear stability problem is solved by employing the technique
described in4]. Therefore to carry out the stability analysis, induced ma®ikas to be constructed.
In [5,6] the induced matrix is given explicitly in two cases= 4, p = 2 andn = 6, p = 3. In this work
we present the algorithm for constructing this induced matrix in the general case.
We consider matriB in the basiqg;}. In [8] the elements oB are shown to be

Bom = (9hIBOm) = (&) A€ A~ A&(plAG) A€@2) A+ A€j(p)
+Eepra A - Aaplejay AAG R A Ap)) +
+Eemra A - Aaplejam Ae A AAE(p)

p
=Y @mA--Aaplejm A AAGH A AG(p), (13)
k=1

where(-|-) denotes the scalar produgt, = 6 (1) A€ @) A+ - A€ (p) aNdGy, =€) A€j2) A+ - A€j(p)-
The latter expression irl8) can be rewritten as

P n
Bm = Zza&i(k)@(l) N ANEB(IG A AB A AGj(p)), (14)
k=1 s=1
whereA = ||g k||. According to P], terms under the double sum iti4) do not vanish if and only if:
() all numbersj (1), j(2),...,s,..., | k) are different; (ii) the sets of numbefis1),...,i(p)} and

{j(D),...,s,..., j(p)} are identical (which would represent the same vegtdr This is possible only
in several cases which we will consider next.

Firstly, this occurs whem = m ({i(1),...,i(p)} and{j(1),..., j(p)} are identical). In this case
instead of {4) we have

p
Bnn = Z aj (k)i (k) - (15)
k=1

The second option is when % m so that all numberdi(l),...,i(p)} are the same as
{jD,..., j(p)}exceptone and we letit be theh number, i.ei (k) £ j (k). This situation is illustrated
in Table 1, where we show a part of sgt(1), ..., i(p)} (second row) and a part of sgt(1), ..., j(p)}

(third row) which are different. In the third row we have replacedj &) with i (s) in cases where they
are equal.
In this case the corresponding matrix element is given as

Bom = &), j k- (16)
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Table 2

Structure of set§i (1), ..., i(p)}and{j®,..., j (p)} in the case of a single different numbek) # j (k)
k—1 k k+1 k—1 k k+1
ikk—1 i(k) i(k+1) ikk-1 i (k) i(k+1)
i (k) j& ik+1 k-1 k) i (k)

Besides this there are also two other configurations such that all nufntibts .., i (p)} are the same
as{j(1,...,j(p)} except one. They are illustrated schematicallyfable 2 The first configuration
results in the following matrix elements:

Bam = —@ik-1),j k) (17)

whereas the latter configuration yields

Bom = —@ik+1),j k- (18)

In all other cases, i.e. when s¢i¢l), ...,i(p)} and{j (1), ..., j(p)} differ by two or more numbers,
the resulting matrix elements vanish.

System ) is usually solved numerically since the original nonlinear problem yieldip@fter the
linearization process can be integrated only numerically. In other words, the nonlinear travelling wave
solution is found numerically and the mati;, 1) is defined on some grid poin{g;} for a given
set of parameter values. In this case matrix elemBats(&i, A) can be determined on each of the
grid points by using the following scheme: (i) we list all possible elements of bothi@8t...,i(p)}
corresponding tanand{j (1), ..., j (p)} corresponding ta; (ii) by comparing these elements and using
formulas (5)—(18) we determine all nonzero elementsif

As an example let us consider how maty is constructed in the case= 4 (i.e. vectorzin (1) is
four dimensional) ang = 2 (i.e. systemX) has a two dimensional subspace of solutions bounded for
& — —oo (and+o0)). Firstly, we list all possible elements of étl), i (2)} corresponding ton, where
mis an index of the basis vectgy, in (8) andi (1, 2) is index of the vectors (1 2 in (8). These are{l, 2}
form=1,{1,3}form=2,{1 4} form=3,{2,3} form=4,{2,4} form=5, {3, 4} form = 6. Now
we are ready to determine element8gf,. For brevity let us consider only the elements of the first row,
i.e. B1n. According to (5) B11 = a11 + ag». To find B2 we compardl, 2} and{1, 3} corresponding to
n = 2. They differ in one indek(2) = 2 # j (2) = 3 and it follows from (6) thatB12> = a3. Similarly,
comparingl, 2} and{1, 4} (n = 3) we obtainB13 = a»4. Next,n = 4 corresponds t{2, 3} and it differs
from {1, 2} in one index (1) = 1 # j (2) = 3. Therefore, according td.{), B14 = —ay3. Similarly, for
n = 5 corresponding t¢2, 4} we haveB15 = —aj4. For the last element in this row = 6 and{3, 4}
differs from{1, 2} in two indexes; thereford3, = 0. Elements of the other rows can be constructed in
exactly the same manner to give

ap1+axp  azs a4 —ai3 —ai4 0
azg2 a;1t+ax  ass a2 0 —ai4
B _ a2 43 a1+ ags 0 a2 a3 (19)
—azy a1 0 ap+azz  ass —az4 |
—agy 0 a1 43  axptas a3

0 —a41 ag1 —ag agz  azz+ g
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Such an algorithm can be easily implemented in standard packages like Matlab, Mathematica, Maple,
or programmed in C++, Fortran etc. After the elementB bfave been determined for all grid poirgts
we can find the solutions of.(Q) numerically using standard integrators.

3. Conclusions

In this work we have considered the linear stability problem which arises from the linearization of
the PDEs exhibiting travelling wave solutions. This problem is formulated as a systerfirst-order
ordinary differential equations. This type of system is usually sEff][which makes the numerical
calculation very difficult. Consequently orthogonalization routines such as the compound matrix method
are required to overcome this stiffness. Having achieved this, the Evans function can be subsequently
calculated and the stability of the travelling solutions determined using the Evans function apgioach [
Previously the compound matrix method has been used for the cases where the number of equations
n, was less than or equal to si%,§]. In this work we have generalized the method for the case of an
arbitrary even number of equations. Extension to the general casenwkembitrary and there is a set
of k solutions bounded fof — —oo andn — k solutions bounded fof — oo is a straightforward
procedure.

The Evans function method is nhow becoming one of the standard approaches for determining the
stability of the solutions from PDEs. We believe that by adopting the generalized approach outlined
in this work, the Evans function method can not only be utilized to investigate the stability of a wider
class of PDEs but also be implemented in automated packages for numerical bifurcation analysis such
as AUTO [11].
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