
Raga reference

Eugene Vasiliev
Lebedev Physical Institute, Moscow, Russia

email: eugvas@lpi.ru

Version 0.99β1
November 10, 2014

Contents

1 Introduction 1

2 Obtaining and compiling the software 2

3 Structure of the algorithm 3

4 INI parameters 4

1 Introduction

Raga1 is a Monte Carlo code for dynamical evolution of self-gravitating non-spherical stellar
systems. The method is described in [1]; here comes a more technical and practical guide.

The program is based on the SMILE software for orbit analysis and Schwarzschild mod-
elling [2]. The main features are:

• Simulation of stellar systems with a much smaller number of particles N than the
number of stars in the actual system;

• Representation of an arbitrary non-spherical potential with a basis-set or spline spherical-
harmonic expansion (same as in SMILE), with the coefficients of expansion computed
from particle trajectories;

1Relaxation in Any Geometry

1

http://td.lpi.ru/~eugvas/smile/


• Two-body relaxation modelled by local (position-dependent) velocity diffusion coeffi-
cients (as in Spitzer’s Monte Carlo formulation); the magnitude of relaxation can be
adjusted to the actual number of stars in the target system and is not related to the
number of particles in the simulation;

• Particle trajectories are computed independently and in parallel, using a high-accuracy
adaptive-timestep integrator; the potential expansion and diffusion coefficients are up-
dated at rather long intervals (possibly comprising many dynamical times, but much
shorter than the relaxation time);

• Can model the effect of a central massive black hole (capture of low angular momentum
stars);

• Includes a Fokker-Planck and orbit-averaged Monte Carlo codes for isotropic spherical
systems (the latter is temporarily unavailable).

In the present version, Raga comes as a standalone program which takes an input N -
body snapshot and evolves it forward in time, optionally storing N -body snapshots and other
parameters at regular intervals during the evolution. In the future we plan to integrate it
into the AMUSE framework [3].

Caution: due to ongoing development of both SMILE and Raga, the present version is
different from the one used to obtain the results in the paper; moreover, some features may
be messed up in the process of restructuring the code – in short, this is not a stable release.
If you want to use it, better contact me first, or wait until it is integrated into AMUSE. This
release was prepared by taking the relevant files from SMILE and throwing away pieces of
code unrelated to Raga, this might also add to confusion.

2 Obtaining and compiling the software

Raga is available for download at http://td.lpi.ru/~eugvas/raga/. To compile, one
needs the following additional libraries:

• GSL (C math library).

• interp2d (GSL-compatible 2d interpolation library).

• optional: Odeint library (now part of boost) – to allow more variants of ODE integra-
tors (various Runge-Kutta methods and Bulirsch-Stoer). Without it the built-in 8th
order Runge-Kutta is happily used. To include the support for Odeint, uncomment
HAVE ODEINT in the makefile.

• optional: UNSIO library – to enable support for GADGET and NEMO N -body snap-
shot formats; without it only the text format is available for input and NEMO for
output. To use UNSIO, turn on the flag HAVE UNSIO in the makefile.

Check and correct paths to various libraries and compilation flags in the Makefile file, then
run make.

2

http://amusecode.org
http://td.lpi.ru/~eugvas/raga/
http://www.gnu.org/software/gsl/
http://github.com/diazona/interp2d/
http://www.odeint.com/
http://projets.lam.fr/projects/unsio/


3 Structure of the algorithm

The simulation progresses in so-called episodes; the duration of each episode can be much
longer than the dynamical time, but shorter than the relaxation time. The episode length
is constant for all particles, but may change in time as the evolution leads to core collapse.
Particle trajectories are computed independently from each other during each episode, using
the smooth potential that is either initialized at the beginning of simulation and is kept
constant, or is updated after each episode using new positions of particles. This orbit inte-
gration is done in parallel (using openmp approach) with a high-accuracy, adaptive-timestep
ODE solver (standard is a 8th order Runge-Kutta method, but other choices are available).
During the orbit integration, one or more ”tasks” can be attached to each particle, that
collect data and/or change properties of the orbit. After all particles have been processed,
each task is performing its own ”finalization” step, and the entire episode is repeated until
the end of simulation time.

The available tasks are described below, in the same order that they are called in the
simulation (the ordering matters).

• Trajectory output: store points at regular intervals of time. Finalization step just
collects the sample points from each orbit at each output time and writes them to an
N -body snapshot file.

• Relaxation: apply local (position-dependent) perturbations to particle velocity after
each internal timestep of ODE solver. The perturbations are computed using the drift
and diffusion coefficients calculated from a spherically symmetric isotropic distribu-
tion of background scatterers, which most closely approximates the true distribution
function of test particles that are actually moving in the system. The amplitude of
perturbation terms is scaled to a desired number of stars in the target system (not nec-
essarily the number of particles in the simulation), see next section. Since the random
perturbations are assigned in an uncorrelated way for each orbit, the total energy of
the system is not conserved by this process. At the finalization step, the total change in
energy accumulated for all particles is summed up and distributed among all particles
to cancel out this imbalance.

• Loss cone treatment: record distance of closest approach to the origin; if it is smaller
than the pre-defined capture radius, the particle is eliminated from the subsequent
simulation and its mass is added to the black hole at the end of episode. This task
stores the list of captured particles in two text files: [outfile].captdata contains
the information about the particle – capture time, angular moment at capture and its
change during the last orbit before capture (if it has not completed a single orbit, this
value is −1), energy of the particle, and its index in the input file; [outfile].captorb
contains the position and velocity of the particle at the moment of capture (it can be
used for the purpose of orbit classification of the captured particles, by loading this file
as an orbit library to SMILE and performing orbit library integration and analysis).

• Binary black hole: record changes in energy and angular momentum for each particle
if it passes near a central binary black hole; at the finalization step, adjust the orbital
parameters of the binary using conservation laws (work in progress).

3



• Potential and distribution function update: collect sampling points from each par-
ticle’s orbit during the episode (in the simplest case, only one point at the end of
episode, but more than one sampling point per particle is possible by setting the
numSamplesPerEpisode parameter, see next section). At the finalization stage, re-
compute the potential (if updatePotential option is set) using all sampling points,
then apply a correction to each particle’s energy arising from the changed potential and
an overall correction to cancel out any random change in the total system energy. If
two-body relaxation is simulated, then also update the distribution function of stars in
energy, which enters the calculation of diffusion coefficients, using the same sampling
points as for the potential. If a filename in fileOutputPotential was provided, then
it stores the potential and the spherical model used to compute diffusion coefficients
at regular intervals of time into text files.

4 INI parameters

All parameters are set in the INI file. By default, the program attempts to read raga.ini;
alternatively, the name of the INI file may be passed as a single command-line parameter.
The file has the following structure (many parameters have the same meaning as in SMILE
INI file):

[Potential]

These parameters are the same as in SMILE, but not all of them make sense for Raga. Here
we describe only the relevant ones.

• Type – can be any type that SMILE supports, however, if one intends to update the
potential during the evolution of the system, then it must be one of the following
variants: BSE, Spline, Spherical. The first two are spherical-harmonic expansions
suitable for any non-spherical potential, the third is restricted to spherical symmetry,
but otherwise analogous to Spline potential.

• DensityModel – provides the actual density model from which the potential expansions
are initialized. It does not need to be the same density profile as the input snapshot,
but if potential is being updated in the course of evolution, then it makes sense to
use the initial density model from the input snapshot itself. This is switched on by
setting DensityModel=Nbody; if no NbodyFile= is provided then the input snapshot
will be used. Alternatively, one may use any analytic mass model such as Dehnen or
Plummer, or an arbitrary profile stored in a text file (when DensityModel=Coefs and
NbodyFile=<filename>).

• Ncoefs radial – determines the number of radial basis functions (in BSE) or points
in radial direction (in Spline or Spherical expansions). In the latter two cases, one
may also specify the extent of radial grid in [splineRadiusMin, splineRadiusMax];
by default they are determined from the input snapshot or from the analytic mass
model.

4



• Ncoefs angular – for BSE and Spline potential this sets the order of angular expansion
(should be an even number, 0 means spherical symmetry).

• Alpha – for BSE potential this determines the shape of basis functions (1 corresponds
to the Hernquist–Ostriker basis set and is a good default choice).

• Mbh – mass of a central black hole (0 by default). The black hole does not move
but contributes to the total potential, and optionally may capture particles that pass
within a given radius.

• other parameters are described in SMILE documentation, and make sense only if
DensityModel refers to some analytical mass model.

The bottom line is that there are two possible modes of operation – with a pre-determined
potential set at the beginning of simulation and never updated (in which case any analytical
density model or a profile stored in a coefs text file is possible, and it does not need to
correspond to the density profile of the input snapshot), or with dynamically updated po-
tential which is expected to be self-consistent with the evolving N -body system (therefore,
DensityModel=Nbody should be used at the beginning of simulation).

[Orbit]

The parameters of this section determine the type (integratorType) and accuracy (accu-
racyAbsolute, accuracyRelative) of orbit integrator, and most interestingly, the ampli-
tude of velocity perturbation term that mimics the effect of two-body relaxation (relaxa-
tionRate). Its numerical value corresponds to N−1 ln Λ of the target system. In other words,
if one wants to simulate a nuclear star cluster with N = 108 stars and a massive black hole of
M• = 106M�, then the value of Coulomb logarithm is usually determined by the number of
stars within the influence radius of the black hole (ln Λ ' lnM•/M� ∼ 15), and one should
set relaxationRate=1.5e-7. The crucial feature of the Monte Carlo algorithm is that the
actual number of particles in the simulation may be far less than N , say, it could be only
105 and still the relaxation rate will be modelled correctly. (One should keep in mind that
when using the option of dynamical update of the potential in the course of simulation, this
introduces artificial numerical relaxation at an amplitude of 1–2 orders of magnitude lower
than the inverse number of particles, so in the above example it would still overwhelm the
“intrinsic” relaxation rate of a N = 108 star system).

[Raga]

• mode may be FokkerPlanck for the approach based on one-dimensional spherical
isotropic Fokker-Planck equation, or Raga for the full-featured non-spherical Monte
Carlo code. (The other two variants use Monte Carlo approach in spherical geometry
with orbit-averaged diffusion coefficients, and are currently unavailable). The Fokker-
Planck option is not yet covered in this documentation.

• fileInput provides the name of the input N -body snapshot file. It may be any of the
formats supported by UNSIO library (e.g. NEMO or GADGET), or – even without this

5



library – a simple text file with 7 columns: 3 positions, 3 velocities, and mass of each
particle (not including the central massive black hole). The same file is used to initialize
the potential at the beginning of simulation, if [Potential]/DensityModel=Nbody

(see above).

• fileOutput gives the file name of optional output N -body snapshot file (presently, in
the NEMO format only).

• fileOutputPotential is the base file name for storing the potential coefficients (for
BSE, Spline or Spherical potentials that are updated in the course of evolution). At
each output time, a new file is created with the value of simulation time appended to
the base file name.

• fileOutputLosscone is the file for storing the information about particles captured
by the central black hole.

• fileLog is the file name for writing the diagnostic information (energy, etc.) after
each episode.

• timeTotal is the total duration of the simulation.

• timestepOutput is the frequency of output of N -body snapshots and potential coeffi-
cients.

• episodeLength is the duration of one evolution episode (integration of the entire col-
lection of orbits), see Section 3. Zero means that the entire simulation is done in one
step.

• numSamplesPerEpisode defines how many sampling points from the orbit of each par-
ticle will be stored during each episode, for the purpose of re-computing the potential
and distribution function at the end of episode.

• updatePotential (true/false) determines whether the simulation continues in a fixed
potential (but with the distribution function still being updated after each episode) or
using the self-consistent potential generated from particles themselves as they evolve.

• captureRadius – if nonzero and a central black hole is present, particles that pass
within the given distance from the origin are captured by the black hole.

• gridSize (default 50) determines the number of bins used to compute distribution
function.

References

[1] Vasiliev E., 2014, MNRAS, in press; arXiv:1411.1757

[2] Vasiliev E., 2013, MNRAS, 434, 3174

[3] Portegies Zwart, S., McMillan, S., van Elteren, E., Pelupessy, I., de Vries, N. 2013,
Comp.Phys.Comm., 184, 456

6


	Introduction
	Obtaining and compiling the software
	Structure of the algorithm
	INI parameters

