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1 Introduction

smile1 is a software for orbital analysis and Schwarzschild modelling. The scientific
reference papers are [1] and [2]; here comes a more technical and practical guide.

As the name suggests, the program is intended to study orbits and self-consistent
Schwarzschild models in various potentials, and might also have educational purposes.
The primary applications are:

• Exploring orbits in various potentials, either given by analytical formulae or several
approximate expansions;

• Studying properties of orbits, from builtin orbit integrator or from external data;

• Constructing equilibrium models of triaxial stellar systems with given density profile
by Schwarzschild method.

As of version 2.5, it is not intended for modelling observational data of any kind; however,
plans exist to develop an observationally-driven Schwarzschild code, with full account of
observational errors and likelihood model search.

The program comes in two versions – GUI interactive tool (Sec. 2) and console pro-
gram with scripting support (Sec. 3). The GUI version is more suited to “exploratory”
and “educational” purposes, since it has many interactive connections between different
modules allowing to easily visualize the results. The console one is more appropriate for
remote and batch computations, when you know what you’re doing.

There are numerous adjustable parameters which are kept in INI file (Sec. 4.1); most
of them may be changed in the GUI, and described in the appropriate section of GUI
reference; some are not modifiable from GUI and these will be described in the section
about INI file.

The architecture of the software is designed to be as flexible and general as possible.
Some modules and blocks can be used in external programs (e.g. orbit integration and
analysis, generation of equilibrium spherical models, computation of potential and forces),
and overall philosophy is to create a layered, modular and extensible design. In particular,
the potential module with some support routines forms a separate library, libsmilepot
(Sec. A.1), which has C/C++ and Python interfaces and bindings to nemo, galpy and
amuse packages.

The source code and compiled versions for various platforms may be downloaded from
http://td.lpi.ru/~eugvas/smile/. If you need to compile it from source, refer to
Appendix A.

2 GUI – interactive environment

The window is split into three areas – right panel contains the parameters of potential
and orbit integration, left side contains one of several tabs depending on the current
module (analysis of a single orbit, orbit library or Schwarzschild model); in the top are

1Schwarzschild Modelling Interactive expLoratory Environment
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the parameters for current module, the rest is occupied by plot area (again depending on
the selected task).

2.1 Right panel

Potential: Several potential/density pairs are implemented, having different subsets of
parameters.

• Logarithmic: Φ(r̃) = σ2

2
ln(R2

0 + r̃2);

• Anisotropic harmonic oscillator: Φ(r̃) = M
2
r̃2;

• Dehnen: ρ(r̃) = (3−γ)M

4πpqR3
0

(r̃/R0)−γ(1 + r̃/R0)−(4−γ);

• Miyamoto–Nagai: Φ(R, z) = −M
/√

R2 + (R0 +
√
z2 +R2

2)2

• Ferrers: ρ(r̃) = 105M
32πpqR3

0
(1− (r̃/R0)2)2;

• Scale-free: ρ(r̃) = Mr̃−γ;

• Basis-set expansion (BSE or BSECompact, see below);

• Spline expansion (see below);

• Cylindrical spline expansion (see below);

• Spherical (see below);

• Frozen-N -body (see below).

Here r̃ ≡ (x2+y2/q2+z2/p2)1/2 is the elliptical radius, and R ≡
√
x2 + y2 is the cylindrical

radius. The potential parameters are:

• q = y/x and p = z/x – axis ratios, should be p ≤ q ≤ 1. Define axis ratio for
potential (in case of logarithmic and harmonic) or density (in other cases).

• M – total mass of the density model (in case of logarithmic potential the squared
asymptotic rotation velocity σ2 is provided instead of M , and in case of harmonic
and scale-free potentials it is just an arbitrary normalization parameter).

• Mbh – mass of central black hole (point mass).

• γ (cusp exponent) – index of power-law density profile in the scale-free model or in
the inner region of Dehnen model, should be 0 ≤ γ ≤ 2.

• R0 (scale radius) – in log.potential denotes region of constant-density core, may be
zero; in other density models is the scale length.

• R2 (second scale radius) – used in Miyamoto–Nagai and NFW models.
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• Nradial, Nangular and Nvertical – number of terms in basis-set and spline expansions
(the last one is used for Cylindrical spline only).

• ε (softening length), θ (tree opening angle) – parameters for frozen-N -body tree-code

• Nbody file – the meaning of this file depends on what is selected in the “Density”
drop-down list: an N -body snapshot for initializing the BSE/Spline/frozen-N -body
potential, or a text file describing an Ellipsoidal or MGE mass model (Sec. 4.4.2),
or a text file with the coefficients of BSE/Spline expansion (Sec. 4.4.4).

BSE (basis-set expansion, [3]), Spline and Cylindrical spline are general-purpose po-
tential expansions which may be used to approximate almost any potential model. The
first two (actually, three, since BSE comes with two choices for the basis set – infinite
and compact) are based on spherical-harmonic expansion and suitable for density profiles
that are not too much flattened; the third is efficient even for very flattened models but is
more computationally expensive. The coefficients of expansion are calculated either from
an analytic density profile, from a set of N point masses, or from a smooth density profile
given by an Ellipsoidal mass model or a Multi-Gaussian expansion. The list of available
density profiles includes:

• All finite-mass potential models defined above (Dehnen, Miyamoto–Nagai, Ferrers);

• Plummer: ρ(r̃) = 3M
4πpqR3

0
[1 + (r̃/R0)2]−5/2;

• Perfect ellipsoid: ρ(r̃) = M
π2pqR3

0
[1 + (r̃/R0)2]−2;

• Isochrone: ρ(r̃) = M
4πpq

3(R0+a)a2−(R0+3a)r̃2

a3(R0+a)3 , a ≡
√
R2

0 + r̃2;

• modified Navarro–Frenk–White (NFW) with an outer cutoff: since the original NFW
profile has logarithmically diverging mass, it cannot be used in potential expansion
directly; instead, a modification with steeper outer profile is introduced. ρ(r̃) =
C (r/R0)−1 (1 + r/R0)−2 (1 + r/rcut)

−1 with rcut being computed so that the total
mass is equal to the mass of a NFW model with concentration c (sharply cut beyond
radius c). rcut is somewhat (but not much) smaller than c because the cutoff is
smoother, which is crucial for an efficient potential expansion. The concentration is
defined as the ratio between virial radius and core radii (R2/R0).

• Sérsic: the deprojected density profile is given by

ρ(r̃) =
M

pqR3
0

b2n+1
n

2π2n2Γ(2n)

∫ ∞
0

exp

[
−bn

(
r̃

R0

cosh η

)1/n
](

r̃

R0

cosh η

)1/n−1

dη ,

where n is the Sérsic index and bn ≈ 2n− 1/3 is the root of Γ(2n) = 2γ(2n, b).

• Exponential disk: ρ(R, z) = M
2πR2

0
exp(−R/R0) ζ(z), with the vertical profile being

either ζ(z) = exp(−|z|/R2)
2R2

or ζ(z) = sech2(z/R2)
2R2

.
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• Ellipsoidal mass model is a flexible way to represent arbitrary density profile with ar-
bitrary variation of axis ratios with radius (Sec. 4.4.2). It allows to provide a smooth
density model described by user-supplied mass profile from a text file, combining
advantages of a smooth density (to avoid statistical fluctuations in expansion coef-
ficients inherent for an N -body initialization of potential expansions) and flexibility
in potential description. The disadvantage is a longer initialization time (however,
the orbit integration time depends only on the number of expansion coefficients, not
the way they were computed; the coefficients are also stored in a text file so the
subsequent runs may re-use it).

• Multi-Gaussian expansion (MGE) is another widely-used parametrization of an ar-
bitrary density profile by a sum of gaussian components. The model is defined by
a text file, as explained in Sec. 4.4.3.

In both BSE and Spline expansions, the angular dependence of potential and density
is represented in spherical harmonics with terms up to lmax ≡ Nangular, while the radial
dependence is either a sum of small number Nradial + 1 of basis functions (in BSE) or
a spline interpolation on a grid of Nradial points in radius (in Spline). For BSE, there
are two sets of basis functions: one, suitable for infinite-extent density profiles such as
Dehnen or NFW, is the Zhao(1996) basis set [4], with the parameter α controlling the
shape of radial basis functions (0 means auto-detect, values between 1 and 2 are reason-
able in most cases), the other (BSECompact) is suitable for finite-extent profiles and is
based on spherical Bessel functions [5], with Rmax being the radius of compact support of
the basis. For the Cylindrical spline expansion, only the azimuthal (sin/cosmφ) part of
density/potential is expanded in Fourier series, with the other two coordinates in cylin-
drical basis being represented by a two-dimensional interpolating spline (Sec. B.3.6). This
potential is defined in a finite domain (R < Rmax, |z| < zmax) and extrapolated outside
this domain using quadrupole expansion. Finally, there is a Spherical potential which,
as hinted by its name, can represent an arbitrary spherically symmetric system given
by any of the available density profiles (including generic profiles specified by Ellipsoidal
and MGE parametrizations, or N -body snapshots). Its function is pretty much the same
as the Spline potential with lmax = 0, with the extrapolation to large/small radii per-
formed slightly differently; it simply encapsulates the machinery of spherical mass models
(Sec. B.2) into the potential module.

Depending on assumed type of symmetry, only some terms in angular expansion may
be used:

• None: all terms with l ≤ lmax,−l ≤ m ≤ l are used;

• Reflection: terms with odd l are zero;

• Triaxial: no terms with odd m or sin(mφ) (implementation note: instead of eimφ we
use cos(mφ) for m ≥ 0 and sin(|m|φ) for m < 0, so this type of symmetry implies
that terms with m < 0 or m = 1 (mod 2) are zero);

• Axisymmetric: use m = 0 only;
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• Spherical: lmax = 0;

The symmetry type is adjustable when initializing the expansion fron an N -body file,
otherwise it is assumed to be triaxial or higher, depending on axis ratios. If initializing
from a set of point masses or from an ellipsoidal/MGE model, the potential coefficients
are written to a filename.coef_bse/coef_bsec/coef_spl/coef_cyl file (Sec. 4.4.4),
which may be then used instead of the original N -body/Ellipsoidal/MGE file as an input
to BSE/Spline/Cylindrical spline initialization.

Frozen-N -body is a representation of potential of N particles fixed in space;
Barnes&Hut tree-code is used for its computation, with tree opening angle θ (the less
its value, the more accurate is tree approximation and the longer computation time) and
softening length ε (may be even set to zero, since the integration uses adaptive timestep
based on acceleration, but it is not recommended as it runs terribly slow and is not op-
timal in terms of bias/variance tradeoff. A better choice is spatially adaptive softening
based on local density, which is selected by assigning a negative value to ε, so that the
actual softening length is |ε| times local mean inter-particle distance).

In the case of generic potential expansions and N -body potential, the file with particle
coordinates should be supplied (by pressing the button Nbody file and selecting file, or
typing the filename and pressing Enter). The file should be in one of the known N -body
snapshot formats (Sec. 4.5). As the potential initialization may take a long time, it is
only done upon pressing the button “Init potential” or selecting the N -body file, rather
than on every change of parameters as for other potentials.

smile supports multi-component potential/density models: for example, to create a
model of a stellar disk embedded in a spherical halo one provides two potential models.
The combobox at the top of right panel determines the choice of the potential component
whose parameters are displayed in the panel; one may add or delete components using
the same combobox. Depending on the type of potentials, one may need to press “Init
potential” after changing any of the parameters and the number of components. If you
see this button, the new settings are not yet applied.

Orbit integration: Defines several parameters related to the computation of orbits.
First is the choice of orbit integrator: for the N -body potential it is Leapfrog, and for
others it can be the default 8th order Runge–Kutta (dop853) method [6], the 15th order
ias15 method [7], the 4th order Hermite integrator, or – if the program is compiled with
the support of odeint library [8] – several other Runge–Kutta and the Bulirsch–Stoer
methods.
Relative and absolute error tolerance are the accuracy parameters for the integrator;
for ias15 there is only one accuracy parameter (and its numerical value is much higher);
and for fixed-timestep integrators the parameter is the step size in units of Torb.
Relaxation rate regulates the amplitude of velocity perturbations that are added during
orbit integration and mimic the effect of two-body relaxation. The numerical value of this
coefficient corresponds to N−1 log Λ, where N is the number of stars in the stellar system
to be modelled, and log Λ ≈ logN . Zero turns off these perturbations. The relaxation
coefficients are computed from a spherically-symmetric approximation to the true density
profile under the assumption of isotropic velocity distribution; thus they will not be ade-
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quate for a dynamically cold system such as a thin disk.
Lyapunov exponent: If turned on, one may look at the behaviour of deviation vector
and finite-time Lyapunov exponent on the “Lyapunov” tab, and use its value in distin-
guishing regular and chaotic orbits. There are two methods of computing the Lyapunov
exponent: integration of a nearby orbit (not always accurate enough; slows down compu-
tation approximately twice) and integration of a variational equation (a bit more accurate
but also slower, and not available for some potentials). Not applicable for frozen-N -body
potential (would give positive values anyway).
Integration time is given in units of Torb.
Sampling interval is the time interval between storing points from the trajectory, in
units of Torb. It affect basically only orbit rendering, but if set too coarse, it may hinder
to find higher-frequency spectral lines, so keep it at least ≤ 0.1.
Omega rotation is the angular frequency of figure rotation of the potential.
Dimensions: 2d or 3d – switch regimes; 2d is basically for studying motion in principal
planes and for Poincaré section, 3d is for real world.

Initial conditions: May specify either 3 coordinates and 3 velocities, or only en-
ergy/Jacobi constant (switch radiobuttons at left). The latter case is primarily used
in construction of frequency map, while the former is for studying individual orbits. Torb

is the period of x-axis orbit, which is calculated automatically and used as unit of time
in integration time and frequency analysis.

Remember that for scale-free and harmonic potential E > 0, for log it may be arbitrary,
and for other potential models E < 0 because they have finite mass.

Start buttons: Start just does what is does, starts an orbit with given initial conditions
(also invoked by pressing Enter in most input lines); Random sets arbitrary IC with the
same energy and starts orbit integration. This is only available if the energy is within the
range of bound orbits; or, in the case of figure rotation, if the Jacobi constant is below
the saddle point (L1/L2).
The integration is performed in separate thread, so one may move around GUI during
computation.

Part of orbit: Show i’th part out of N – if N > 1, split orbit into N equal intervals,
and performs frequency analysis and rendering only for given interval.

Save settings on exit: if checked, saves INI file with most of settings, which are
automatically retrieved upon launch.

Print: prints current figure in the left panel to a PS or PDF file.

Results text box: this message area contains the results of last operation. For or-
bit integration – results of orbit classification: leading frequencies, orbit class, minimum
distance to center, frequency diffusion rate, Lyapunov exponent (if checked), error in
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conservation of energy or Jacobi constant (should tend to 0), wall-clock time for compu-
tation. For frequency analysis and Schwarzschild modelling – orbit population, solution
of optimization problem, etc.

2.2 Left panel – tabs

2.2.1 Orbit

Orbit plot type: 2d projection of an orbit onto one of principal planes (selected
by 2d plane). In this and other 2d plots in the program the following commands are
available: left mousebutton – zoom, Escape or right mousebutton – unzoom to default
view, middle mousebutton – pan/shift.
3d line rendering of orbit: left mousebutton – rotation, Ctrl+left – move, mousewheel –
zoom;
3d mesh rendering of orbit as a solid body (using Delaunay tesselation performed by an
external program qdelaunay, in a separate thread – so it is available after some delay
upon finishing of integration).
rperi, L

2
peri and L2 displays the cumulative distribution of various quantities: pericenter

radius, squared angular momentum at pericenter, and squared angular momentum along
the entire orbit (sampled at each step). The array of recorded values is sorted and
displayed as y values on the plot, while x runs from 0 to 1.
∆E(t) and L(t) show time dependence of energy and angular momentum. These plots
are interesting to see in the case when the effect of two-body relaxation was switched on.

3d mesh parameters: Here one may choose to display entire orbit or just a half of
it lying above one of principal planes, and also specify the maximal segment length of
facets (if it was unlimited, any orbit would look like a convex blob; setting it too large
will remove details, too small – create holes; it is automatically selected based on typical
segment length of trajectory). To apply changes, press Refresh ([re]starts the tesselation
thread).

Load/save orbit to a text file (Sec. 4.4.5).

2.2.2 Potential

This panel is used to display the radial profile of the potential, density, circular ve-
locity (rotation curve), frequencies, or surface density, depending on the choice of
the radiobutton. The circular velocity is defined as vcirc ≡

√
xi ∂Φ/dxi for i-th coordi-

nate, which matches the conventional definition for axisymmetric systems if i is x or y.
The surface density option displays Σ(x, 0) ≡ ρ(x, 0, z) dz, analogous quantity for y, or
M(z) ≡

∫∞
−∞ dx

∫∞
−∞ dy ρ(x, y, z) for z coordinates in the abscissa axis. The frequencies

option shows the three frequencies: circular (blue), epicyclic (green), and vertical (red).
One may use linear or logarithmic scaling, and choose between three principal axes to
be used as the abscissa. The radial extent of the plot is determined by the current initial
conditions (the radius of x-axis orbit with the same energy as the current orbit; in case
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of logarithmic scaling the abscissa covers three decades in radius inward from the outer
extent). If the potential consists of more than one component, each of them may be
displayed on the plot separately or all components together (in particular, a central black
hole is included in the potential if all components are selected, but not for individual ones
even if there is only one). The potential/density profile can be exported to a text file
(Sec. 4.4.7).

2.2.3 Poincaré

Poincaré section is an useful tool for studying orbital structure of 2d systems. (It may
be used in 3d, but is mostly meaningless). Needs to be turned on by corresponding
checkbox. The coordinates used in the surface of section are specified by two drop-down
lists: when the first coordinate passes through zero with positive derivative, then the
second coordinate and its derivative are added to the surface.

Each orbit integration adds a series of points with a new color to the plot. Regular
orbits have these points grouping in one-dimensional cycles; chaotic ones have scattered
set of points in two-dimensional regions. Red outer curve marks the equipotential surface.

Plot may be zoomed in by left mousebutton, Ctrl-right zooms out, middle button
moves. Right click within the equipotential boundary sets up the initial condition (to
integrate the orbit, press Enter thereafter). There is a button to locate the periodic orbit
that parents the current one and closes after a specified number of passages through the
plane (works intermittently). Changing the energy clears the plot (as does the eponimous
button). One may also export the contents of the plot to a text file.

2.2.4 Frequencies

Displays spectra of orbit in three coordinates (blue – x, green – y, red – z), frequencies
measured in units of inverse X-axis orbit period. Vertical lines show detected spectral lines
(white – by the precise Hunter method, black – by the non-refined Carpintero&Aguilar
method which is accurate to within Nyquist frequency; the latter is used when Hunter
method produces divergent results, typically for very closely spaced lines). Lines may be
turned off by checkbox. Left mousebutton zooms, middle button moves, right click zooms
out.

2.2.5 Lyapunov

Displays quantities used to estimate Lyapunov exponent of an orbit, in the case that it
is calculated (then the evolution of deviation vector w is computed along with the orbit
integration)

X axis is for time (in Torb time units); left Y axis is for finite-time estimate of Lyapunov
exponent Λ = Torb ln(|w|)/t (relative, i.e. normalized to unit frequency), in blue; right Y
axis is for deviation vector divided by time, |w|/t, in red; both axes are logarithmic.

For regular (part of) orbit Lyapunov exponent decreases as t−1, and deviation vector
grows linearly, so the red line is horizontal. When chaos starts to appear, Λ fluctuates
around non-zero value, and w grows up. (See Fig. 4 in [1] for explanation).
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2.2.6 Frequency map

Here one may study an ensemble of orbits by means of frequency map (and other tools).
Frequency map is typically built for given energy (specified in the right panel); how-

ever, one may also view orbit library from Schwarzschild model, in this case View shell
spinbox selects the energy level from Schwarzschild grid (0 means display all orbits).

To create FM, one specifies the number of points in the start-spaces:
stationary (initial conditions on the equipotential surface with zero velocity),
principal-plane (on three principal planes),
Y − α (on y axis, with velocity perpendicular to it, as in Schwarzschild 1982),
random (yeah, anything you like! Ergodic within the energy hypersurface).
Note that the first three options are sort of meaningless in the case of figure rotation (the
orbits will not have the same value of Jacobi constant); the last option will only work if
the value of Jacobi constant is below the Lagrangian point L1.
Alternatively, one may use an existing start space loaded from a file. In this case, setting
0 as the integration time (in the right panel) forces to use the values for each orbit written
in the orbits file (otherwise they are overridden with the settings in GUI).

Start button starts the orbit integration in several parallel threads (their number being
based on the number of processor cores). Once started, this button serves to terminate
prematurely the threads (after each one finishes its current orbit).

Import/Export loads/stores data in the Orbit Library format (Sec. 4.2). The cur-
rent configuration is kept along with the orbits file in the corresponding .ini file and
automatically loaded during import.

The main area displays plots based on the selected radiobutton in the top-right array:

• Frequency map: each orbit is represented by point which coordinates are ωy/ωx
and ωz/ωx (for 3d) or simply ωx and ωx (for 2d), where the ωs are the leading
frequencies in each coordinate. 3d map also is decorated with a dozen of most
important lines representing resonant or thin orbits (most notably, (0, 1,−1) line
for long-axis tubes (LAT) and (1,−1, 0) for short-axis tubes, SAT).

• Histogram: cumulative distribution function of either of two chaos indicators.

• Start-space (stationary, principal-plane, and Y −α) – points from the correspond-
ing start space are plotted in 2d projection.

The points in the plot are colored in blue (regular) or red (chaotic), based on the
criteria in the chaos criterion section: an orbit is termed to be chaotic if it has either the
frequency diffusion rate δω larger than the threshold given, or if its Lyapunov exponent Λ
is larger than the threshold (usually 0, since all orbits with positive exponents are chaotic;
if it was not computed, this has no effect).

The coloring depends on only one of these two criteria (select appropriate radiobutton),
but the labelling of an orbit as chaotic happens if either of them is satisfied. This labelling
is important in Schwarzschild modelling, and in calculation of fraction of chaotic orbits.

View shell setting enables to filter out only orbits whose initial conditions place them
in a particular energy shell of the Schwarzschild model (0 shows all orbits).
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Only nonzero weight checkbox filters out only the orbits with nonzero weights in
the Schwarzschild model (and for the cumulative distribution histograms, the weight of
each orbit is also taken from the model). If in addition view shell is set nonzero, only
the orbits from the corresponding energy shell are shown.

In the frequency map and spart-space chart one may right-click on the plot and select
the nearest orbit, which set the initial conditions and displays some information about
the orbit. Pressing Enter one may then re-integrate the orbit. Additionally, zoom, move
and unzoom on frequency map is the same as in Poincaré plot.

2.2.7 Schwarzschild model

Orbit library tab specifies the number of orbits in the entire model and the method
of initial conditions generation (Sec. B.8). All of these methods can use uneven
sampling in energy space, if bias factor in energy is non-zero, then it specifies the
relative difference in weight between the most bound and the least bound orbits (i.e. if
this parameter equals 9, then the ratio will be 10, thus increasing the number of orbits in
the central parts of the model). The choice of Eddington IC generator has additionally
a bias factor in angular momentum, which may be used in a similar way to increase
the number of low angular momentum orbits (and correspondingly decrease their average
weight). Spherical Jeans IC generator takes additional velocity anisotropy parameter
(commonly denoted as β); and Axisymmetric Jeans has two parameters – meridional
velocity anisotropy (βm) and degree of rotation (k). Finally, one may use already
loaded orbit library as initial conditions.

Number of sampling points for Nbody model specifies how many points drawn
randomly from each orbit trajectory will be stored in .smpl file for subsequent creation
of N -body initial conditions. If you do not plan to create N -body model, may set it to
zero.

Import/export SM buttons does the same as for Frequency map, but in addition
.schw and .smpl binary files are stored (Sec. 4.3). Start button initializes SM , creates
initial conditions (if IC generator is not set to use existing points) and begins orbit
integration in parallel threads.

Create N-body snapshot button generates a N -body representation of the
Schwarzschild model, where particles are drawn from sampled points, their number pro-
portional to orbit weight. If there are insufficient points for a particular orbit (that is, if its
weight w is greater than Nsampling points/Nbodies), this orbit is set to be reintegrated for the
same time interval, but collecting more sampling points. The reintegration is supposed
to recreate the same orbit, but sometimes it may turn out to be different (e.g. if using
Lyapunov exponent calculation, with initial deviation vector generated randomly), so it’s
best to avoid such situation. On average, one needs to have at least 10Nbodies/Norbits

sampling points per orbit.
There is an option to create N -body model with unequal mass particles (“mass refine-

ment”), so that the innermost particles are lighter. If the refinement factor Rf > 0, the
orbits are sorted in energy and binned into Rf + 1 bins, yielding approximately the same
number (not mass) of particles each. Particle masses in each bin differ by a factor of two.
NB: for rotating models the energy of initial conditions in the inertial frame is taken as
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the sorting value, not the Jacobi constant which is actually the conserved quantity, but
is not monotonic with radius.

The N -body model is exported in one of the supported snapshot formats (Sec. 4.5).
Then some statistical quantities are calculated, including virial ratio and average position
and angular momentum (for the entire model, and for particles within half-mass radius
shown in brackets).

Model parameters tab contains the choice of SM variant, which should be made prior
to starting orbit library integration itself:

• Classic Schwarzschild model: partitioning configuration space into a number of
cells, compute fraction of time each orbit spends in each cell. Parameters: Number
of radial coefs (shells), number of lines splitting each of three segments of each
shell (so the number of cells in a shell is 3n2

lines, and total number of constraints is
3n2

lines nradial).

• Cylindrical: similar to Classic, but with the spatial grid covering a cylindrical
region with base in x− y plane and extending in z direction up to some zmax. The
grid consists of nradial concentric shells in cylindrical radius, nangular divisions in the
azimuthal (φ) direction, and nvertical slices in z direction.

• SHGrid: evaluating coefficients of spherical-harmonic expansion of the potential
at a number of radial grid points (conceptually similar to Spline expansion, except
that no splines are constructed, just the values at grid nodes are used). Parameters:
number of radial shells, number of angular coefs (= lmax, so that the number of
terms in each shell is (lmax/2 + 1)(lmax/2 + 2)/2 since only terms with even l are
used).

• SHBSE: evaluating coefficients of spherical-harmonic BSE expansion of every orbit.
Parameters: number of angular coefs (same as above), radial coefs (equivalent to
nradial in BSE), α parameter of BSE (may set 0 for auto-detect). Total number of
constraints is (nradial + 1) (lmax/2 + 1)(lmax/2 + 2)/2.

Note that the SM variant chosen here doesn’t need to be related to the potential used
in orbit integration. However, if they are related (SHGrid SM and Spline potential, or BSE
SM and BSE potential with the same value of α), this is used to speed up initialization
of model constraints (often very substantially).

Regardless of the selected variant, there is still a radial grid used for recording kine-
matic data (that is, radial and tangential velocity dispersion of each orbit in each radial
shell), which may be used in optimization to constrain velocity anisotropy. The size of this
grid is given by the parameter nshells and is not related to the number of radial coefficients
in the density model.

Inner and outer shell mass specify which fraction of total model mass (which
should be finite) is contained in the innermost and outermose radial grid node; 0 makes
the default choice of Mouter = 1 − 1/(Nshell + 1), Minner = Mouter/Nshell. If the requested
inner shell mass is smaller than 1/Nshell of the total mass of SM (which is Mouter times the
total mass of this density model), then a non-uniform, exponentially spaced grid in shell
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masses is constructed. This parameter applies to the kinematic grid and Classic density
model.
The total weight of all orbits is required to match the total model mass, not the mass
within the outermost grid shell. Initial conditions for particles cover the energy range from
the lowest possible energy (unbounded for models with a black hole) to the binding energy
at a radius containing 0.999 of total mass; thus some orbits are deliberately assigned to
lie (mostly) beyond the grid, thus ensuring that the total model mass could be more than
Mouter.

For a multi-component SM (which necessarily involves a composite potential), density
components enumerates the components of the potential whose combined density is used
as the target of the model (empty line means all).

Note that all variants of SM imply at least triaxial symmetry of density profile, even
if the underlying potential is less symmetric (no warning is given).

Optimization tab contains several parameters controlling the solution of optimization
problem (see Sec. B.6 for the formulation of this problem).

Constraint penalty linear/quadratic define the contribution to the objective func-
tion penalizing the constraint violation. If both are zero, the constraints must be satisfied
exactly (not recommended). If the linear penalty is positive, it corresponds to the factor
α1 in the penalty function (64); if negative, its absolute value gives the relative tolerance
range for the constraints α0 (65). The quadratic penalty α2 may be zero or positive. Note
that if the linear penalty is positive (default situation), then the optimization problem is
always feasible, even if the constraint values are severely mismatched; therefore, a message
“Optimal solution found” from the solver doesn’t mean that the actual SM is feasible.

Regularization is the factor λ in the quadratic part of the penalty function (66),
which drives the orbits towards a more uniform weight distribution.

Chaotic penalty is the factor µ in (67) which enhances (if > 0) or reduces (if < 0)
contribution from regular orbits in the solution; its magnitude is in principle unlimited,
but if set too high, the cost of adding an unwanted orbit will overweight the cost of
constraint violation. Keeping its absolute value ≤ 1 is typically enough. Setting it to zero
produces a model without any preferences about orbit properties.

Maximal orbit weight may be used to limit the weight assigned to each orbit by
the solver (setting it too low will, of course, result in infeasibility of solution, so it only
makes sense to adjust it in the case that a few clear outliers are seen, particularly in linear
optimization). 0 turns off this constraint.

Constrain anisotropy option adds constraints to optimization problem, forcing the
average velocity anisotropy coefficient β in each shell to equal a predefined value. Its
value is linearly interpolated with the enclosed mass from βin in the first shell to βout in
the last shell.

The optimization problem may be solved either by linear or quadratic programming
using the interior-point method. There are several solvers available: GLPK library (LP
only), Python-based CVXOPT module (LP/QP), or BPMPD, external solver available
from Cs.Mészáros (LP/QP). In general, QP is a preferred method since it tries to make
the distribution of orbit weights more uniform, penalizing “outliers” with high weights.

When the solver has processed the optimization problem, its results are displayed in
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info box in the right panel, including the number of infeasible constraints (if the problem
cannot be solved), and a few quantities indicating the quality of solution (entropy – a
measure of non-uniformity of orbit weights, ratio of max to average orbit weight, and
fraction of orbits comprising 50% of total model mass).

Export grid button creates a text file with statistics about the solution (after it was
obtained). This file format is described in Sec. 4.4.6.

View options switch between various plots:
Grid cell displays the model constraints (blue for feasible, red for infeasible, for which
the difference from the required value is > 1%). The meaning of coefficients depends on
the variant of SM . For Classic and Cylindrical SM , it is mass in corresponding spatial
cell, which are displayed in a projection on the 2d plane similarly to stationary start-
space points – for each radial shell separately (only for Classic model), or together. For
SHGrid and BSE variants, these are coefficients in expansion, arranged in 2d array so
that each line shows spherical-harmonic coefficients for given radius (in SHGrid) or index
of radial basis function (for BSE); they are further separated in groups of 1, 2, 3, ... coefs
for l = 0, 2, 4, ..., each group having l/2 + 1 coefficients for m = 0, 2, ..l. Right-click on a
cell displays some information in the message area.
Anisotropy shows the value of β for each radial shell (horizontal axis is the shell number).
Orbit weights are shown with the horizontal axis being the orbit number; regular and
chaotic orbits are colored blue and red. Right-click on a point does the same as in
frequency map plot.
Weight histogram displays these weights as a cumulative distribution function. If it
has only a small percent of orbits at the right end of the plot, this signals that the model
is over-constrained or even infeasible.
For Classical SM one may display any particular grid shell or the entire model (in the
latter case all cell centers at all radii are simultaneously projected on the plot, which may
be confusing but allows to quickly identify infeasible ones). For the other three variants
all constraints are displayed simultaneously on a two-dimensional plot.

3 Console scripting

The console variant may perform the same set of operations either using interactive com-
mands entered in the command prompt, or feeding them as a script from a text file (by
running smilec scriptfile). Below follows the command reference (spelling is case-
insensitive).

Exit. Obvious (not necessary in a script file).
ReadIni("file.ini") (or LoadIni, ReadConfig, LoadConfig) normally should be

the first command in a session (unless one is satisfied with default parameters loaded
from smile.ini).

ImportOrbits("orbitsfile") (or LoadOrbits) loads orbit library from text file;
ExportOrbits("orbitsfile") (or SaveOrbits) stores orbit library (after building fre-
quency map, etc.). Equivalent to the Import/Export buttons on the Frequency map
page of the GUI version, with the difference that the “Export” command does not auto-
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matically store configuration in accompanying orbitsfile.ini file (since the configura-
tion anyway has to be loaded from an ini file prior to computations). Loading an orbit
library, however, includes an attempt to load a corresponding ini file.

ImportModel("orbitsfile"), ExportModel("orbitsfile") – same as above, but
also load/stores binary files orbitsfile.schw (with SM data arrays for each orbit) and
orbitsfile.smpl (with sampling points from trajectory), see Sec. 4.3. Equivalent to
Import/Export buttons on Schwarzschild page, again without saving an ini file on
export.

ExportPotential("potentialfile") creates a text file with potential data described
in Sec. 4.4.7. If an orbit library was loaded, the potential/forces/density is also sampled at
the location of points of the library and stored in a separate file <potentialfile>.points,
and if the potential is BSE or Spline, its coefficients are stored in <potentialfile>.coefs

ExportNbody(NumberOfBodies, "nbodyfile"[, "Format"[, RefineFactor]])

creates the N -body representation of SM and writes a snapshot file in the given format
(variants include “Text”, “Nemo” and “Gadget”, the latter is available only if the
program was compiled with the UNSIO library; see Sec. 4.5). Refine factor may be used
to create a model with unequal particle masses, having a finer mass resolution in the
centre. Default is the text format and a zero refine factor.

RenderDensity(NumberOfPoints, "nbodyfile"[, "format"]) creates a visual rep-
resentation of density in the model, by sampling it with the required number of points
(same as the standalone program RenderDensity, Sec. C.2, with the difference that it
always operates on the entire potential and not on the density model that might have
been used in computing potential expansion coefficients).

BuildFreqMap creates an orbit library with the number of points specified in the
Frequency_map section of INI file, for the energy or Jacobi constant given in the Orbit

section. BuildFreqMapExist integrates the orbits with the initial conditions loaded earlier
from an orbit library file.

BuildSchw (or BuildModel) and BuildSchwExist do the same except that first a
model instance is created (with the grid parameters specified in the Schwarzschild_model
section of INI file), and the SM data (such as velocity dispersion, cell mass fraction
or potential expansion coefs, depending on SM variant) and sampling points are also
recorded. They later can be saved by ExportModel command.

SchwLinear, SchwQuadratic start the corresponding solver routine, after the model
has been loaded by ImportOrbitsSchw or created by BuildSchw.

ExportStats("statsfile") writes out the text file with Schwarzschild model statis-
tics (Sec. 4.4.6).

4 File formats

Non-bulky data is kept in text files (with tab- or space-separated values). The most
important is the orbit library file, which contains initial conditions and results of analysis
for a set of orbits. It is accompanied by a configuration (INI) file which contains all the
necessary information about this orbit library (potential, integration parameters, chaos
criteria, etc.). Some text file formats are only for export purposes.
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4.1 INI parameters

Here is the list of all options and parameters in the configuration file smile.ini [with
alternative names] (and their default values). The parameters are split into several
[sections].

[Potential] – properties of potential/density model. If there are more than one com-
ponents in a composite model, then the parameters for the additional components are
listed under sections [Potential1], [Potential2], etc., while the first component has
no zero in the section name.

Type – variants: Logarithmic, Harmonic (default), Dehnen, Scale-free, Scale-free SH,
Miyamoto-Nagai, Ferrers, BSE, BSECompact, Spline, CylSpline, Spherical, Nbody.

Symmetry – None, Reflection, Triaxial (default), Axisymmetric, Spherical.
Density [or DensityType] – for BSE/BSECompact/Spline/CylSpline/Spherical po-

tentials, this is the underlying density model used to compute coefficients. Variants:
Dehnen, Ferrers, Miyamoto-Nagai, Plummer, Perfect Ellipsoid, Isochrone, NFW, Sersic,
ExpDisk, and three other options which load or compute coefs from a text file given in
NbodyFile: Coefs means that pre-computed coefficients are loaded from that text file
(Sec. 4.4.4), Nbody – coefs are calculated from a set of point masses stored in that file
(Sec. 4.4.1), and Ellipsoidal or MGE – calculated from an Ellipsoidal mass model or a
Multi-Gaussian Expansion specified in the text file (Sec. 4.4.2 and 4.4.3).

NbodyFile [or File] – for treecode N -body potential this is the name of the file with
the set of point masses, for BSE/Spline potentials it may be any of the above described
three kinds of text files.

q_YtoX, p_ZtoX [or simply q, p] (1) – axis ratios y/x and z/x, must be p ≤ q ≤ 1.
Mbh [or BHmass] (0) – central point mass (supermassive black hole); for a composite

modelonly the value from the first component is used.
Mass (1) – total mass of the density model.
scalerad [or Rscale] (1) – scale radius of the density model; its meaning depends

on the model type. For instance, for the logarithmic potential it is the core radius, while
for the Dehnen profile it is the scale radius.

scalerad2 [or Rscale2] (1) – second scale radius of the density model (used for the
Miyamoto–Nagai and NFW profiles).

Gamma (1) – index of power-law cusp for Dehnen and scale-free potentials.
SersicIndex (4) – n parameter of the Sérsic density profile.
Ncoefs_radial, Ncoefs_angular (20, 6) – number of radial and angular terms in

BSE, Spline and Scale-free SH potential expansions (for analytic density models which
have at least triaxial symmetry, the number of angular coefs lmax is even; 0 means spherical
model only).

Ncoefs_vertical (20) – for the Cylindrical spline expansion, the number of nodes
in z direction.

Alpha (0) – shape parameter in the BSE potential; 0 means auto-detect, allowed
range is 0.5−∞, preferred values are 1− 2.

Rmax (1) – radius of compact support for the BSECompact potential.
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treecodeEps (-2) – ε, softening length used in frozen-N -body integration. Negative
means adaptive softening based on local interparticle distance.

treecodeTheta (0.5) – tree opening angle for N -body potential.
splineSmoothFactor (1) – value of ∆AIC (57) determining the amount of smoothing

of spline coefficients initialized from an N -body snapshot.
splineRMin, splineRMax (0) – determines the extent of the radial grid in Spline and

Cylindrical spline potentials; 0 means compute by default.
splineZMin, splineZMax (0) – determines the extent of the grid in z direction for

the Cylindrical spline potential; 0 means compute by default.

[Orbit] – parameters of orbit integration.
x, y, z, vx, vy, vz – initial conditions (IC).
E – IC energy or Jacobi constant (in case of rotating frame).
useE (false) – whether to use energy or coordinates (in the former case, x is initial-

ized to be long-axis radius for given E. Makes sense for building frequency map at given
E).

N_dim (3) – 2 or 3.
Omega (0) – angular frequency of figure rotation of the potential (it is listed in the

orbit integration section because it has no effect on the properties of the potential itself,
only on the equations of motion in the rotating frame).

integratorType (default) – choice of the ODE integrator: default is the 8th order
Runge–Kutta (DOP853) for all potentials except N -body, and the Leapfrog for the latter.
Another general-purpose integrator for smooth potentials is IAS15, a 15th order adaptive-
timestep integrator which can easily be accurate to machine precision and is comparable in
performance to DOP853, while having better accuracy in most cases. Yet another option is
the 4th order Hermite integrator, which uses the information about force derivatives in a
predictor–corrector scheme with only two force evaluations per timestep. It uses adaptive
timesteps and in general is quite well suited for potentials that are not infinitely smooth
(i.e. spline expansions). Other variants are possible if compiled using the odeint library:
DormandPrince5, CashKarp5 and RungeKutta3a are adaptive-timestep Runge–Kutta in-
tegrators (of order 5 and 3), RungeKutta4 and SymplecticRK4 are fixed-timestep 4th
order Runge–Kutta methods (the latter is symplectic), and BulirschStoer is the eponi-
mous adaptive-timestep, variable-order method. Of these, DOP853, DormandPrince5 and
BulirschStoer have comparable efficiencies, IAS15 is the best choice for high accuracy
in infinitely smooth potentials, Hermite also does a good job at intermediate accuracy
for Spline potentials, and other methods are largely for demonstration purposes.

accuracyRelative, accuracyAbsolute (1e-9) – accuracy parameters for variable-
timestep ODE integrators (except the Leapfrog integrator for the N -body potential). The
values are the upper bounds on estimated error per integrator timestep; usually the energy
conservation error per one dynamical time Torb (not per internal timestep) appears to be
of the order of these accuracy parameters. For Hermite the mathematical meaning of the
accuracy parameter is somewhat different, but it yields comparable errors for the same
settings as for other integrators. Note that a nonzero accuracyAbsolute is breaking the
scale-invariance of the integrator (for instance, orbits that come to very small radii can
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have an absolute error in position, say, 10−9, but relative error for r = 10−5 will be only
10−4) – therefore it may be better to set the absolute error tolerance to zero..

accuracyIAS15 (1e-4) – accuracy parameter for the IAS15 integrator; its meaning is
less straightforward, but a rule of thumb is that 10−3 gives an energy conservation error less
than 10−8 per 100 Torb, and 10−4 is close to machine precision, while being only 20% slower.
Also for higher accuracy the accumulation of energy error is not monotonic, as for other
integrators, but rather a random walk, therefore it is better suited for long (� 103 Torb)
integration intervals. However, keep in mind that for the Spline potentials the accuracy of
all high-order integrators is limited by discontinuities of the 3rd derivative of the potential,
therefore one shouldn’t expect the energy error to be smaller than 10−7..10−6.

accuracyFixedTimestep (0.005) – for fixed-timestep ODE integrators gives the
timestep in units of Torb.

accuracyTreeCode (0.25) – η, factor in timestep selection for the Leapfrog inte-
grator used for the N -body tree-code potential. The timestep is taken to be τ =
η×min(l/v,

√
l/a), where l – distance to nearest particle, softened (i.e. it is

√
l2true + ε2),

v – particle velocity, a – acceleration.
treecodeSymmetrizeTimestep (false) – whether to use Hut et al.(1995) [11] algo-

rithm for time-symmetrizing adaptive timestep, to improve energy conservation at the
expense of almost twice as slower integration.

intTime (100) – integration time in units of long-axis period (Torb). Zero value
means using per-orbit data stored in orbit library file, when integrating orbit library with
pre-loaded initial conditions.

samplingInterval (0.02) – timestep for recording the sampling points from the
orbit, in units of Torb: determines the maximum orbit frequency which can be detected,
and the smoothness of rendered orbit. Has nothing to do with integration timestep.

calcLyapunovMethod (0) – whether and how to compute Lyapunov exponent. 0
means no computation, 1 is the integration of a nearby orbit, 2 is the variational equation.
The latter option might be slower but potentially more reliable.

relaxationRate (0) – amplitude of velocity perturbation that mimics the effect of
two-body relaxation. Its numerical value corresponds to N−1 ln Λ, where N is the number
of stars in the stellar system and ln Λ ≈ lnN is the Coulomb logarithm.

usePS (false) – whether to use Poincaré surface of section (makes sense only in 2d).
intTimeMax (0) – maximum integration time (in Torb) if Pfenniger’s adaptive method

[14] is used (only in the context of Schwarzschild modelling; 0 to disable). [currently
unused].

intTimeMinAbs (0) – minimum orbit integration time in global N -body units (not
in energy-dependent orbital periods). This could be used if the dynamical times vary
enormously throughout the model, to ensure that even the most tightly bound orbits are
integrated for a minimum amount of physical time. The most apparent application is for
the models with central massive black holes, when we want to make sure that all orbits
perform at least several precession cycles (so that the minimum integration time is a few
times longer than Torb at the influence radius of the black hole).

adaptiveTimeThreshold (0.05) – controls the Pfenniger’s method: if difference in
SM constraint values between two halves of integration time exceeds this threshold, con-
tinue integration further until this difference becomes less or the maximum integration
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time is reached. [unused]

[Frequency_map]

numOrbitsStationary, numOrbitsPrincipalPlane, numOrbitsYalpha,

numOrbitsRandom – number of points in corresponding start spaces.

[Schwarzschild_model]

densityModelType – (Classic), Cylindrical, SHBSE, SHGrid, specifies the type of
density model.

densityComponents (all) – list of potential components (if more than one) that are
used for the density profile in a multi-component Schwarzschild model (Sec. B.7). For
instance, if there are three [Potential*] groups, for the disk, bar and halo, then one might
set this parameter to 0,1 to use the combined disk and bar potentials as the target density
for the model.

numOrbitsRandom (1000) – number of orbits in the entire model.
ICgenerator – (Eddington), JeansSph, JeansAxi, specifies the method for gener-

ating initial conditions for the orbit library (Sec. B.8).
ICbeta (0) – velocity anisotropy parameter for JeansSph IC generator.
ICbetaAxi (0), ICkAxi (1) – meridional velocity anisotropy parameter and rota-

tion parameter for JeansAxi IC generator.
weightSkewFactorE (0) – if positive, create more orbits at high binding energies

(near the center); the value is the ratio of maximum to minimum orbit weight priors
minus 1, i.e. if it equals 9, then the outermost orbits will have 10 times larger weight (on
average), and will be the same 10 times less numerous.

weightSkewFactorL (0) – same mechanism applied to the distribution of orbits in
relative angular momentum squared (normalized to the angular momentum of a circular
orbit with the same energy). Applies to Eddington IC generator; if positive, create more
orbits with low angular momentum.

numRadialCoefs (20) – in BSE SM , number of radial coefs; in SHGrid, Classic and
Cylindrical SM , number of grid points in radius (cylindrical radius for the latter).

numAngularCoefs (6) – in BSE and SHGrid SM , number of angular coefs (should be
even); in Cylindrical SM , number of grid cells in angular direction.

numVerticalCoefs (15) – in Cylindrical SM , number of grid cells in z direction.
linesPerSegment (2) – in Classic SM , split each shell into 3 × (linesPerSegment)2

cells.
SMAlpha (0) – in BSE model, the shape factor in the basis set. 0 means the same

as in the potential if the latter is also BSE, or autodetect based on the potential’s inner
density slope.

numShells (20) – number of radial shells to store the velocity dispersion information
in all variants of SM .

innerShellMass, outerShellMass (0, 0) – fraction of mass enclosed by the inner-
most and the outermost shells in radius, for the Classic SM and for the velocity dispersion
grid. Zero values mean default 1/(numShells+1) and numShells/(numShells+1).

smGridYtoX, smGridZtoX (1, 1) – flattening (axis ratio) of the spatial grid in Clas-
sic SM .
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chaoticMinFreqDiff (1e-3) – threshold in frequency diffusion rate (∆ω) separating
regular from chaotic orbits. Used to plot them in different colors on the frequency map,
and to increase or reduce fraction of chaotic orbits in Schwarzschild model.

chaoticMinLambda (0) – same threshold in Lyapunov exponent (Λ). If it is not
calculated, this has no effect; if it is, then the default value of 0 just separates orbits with
detected signs of chaos (Λ > 0) from those for which chaotic behaviour was not detected
(the latter are assigned Λ = 0).

chaoticPenalty (0) – if positive, penalize usage of chaotic orbits; negative – prefer
them. May take a continuous spectrum of values, although most of the effect is felt when
this factor is of order ±1. For larger values, the penalty for wrong type of orbits may
outweight that of violating SM constraints, so the model becomes infeasible.

constraintPenaltyLin, constraintPenaltyQuad (1, 1) – penalty factors for con-
straint violation (applies for both density and kinematic constraints, if the latter are used).
See Sec. 2.2.7 or B.6 for the description.

regularization (0.1) – λ factor (66) which drives the distribution of orbit weights
towards a more uniform one.

maxWeight (0) – max.weight of a single orbit. 0 means no restriction.
constrainBeta (false) – whether to constrain velocity anisotropy coefficient β in

the solution.
betaIn, betaOut (0, 0) – values of β for the inner and the outer radial shells (lin-

early interpolated in enclosed mass between these two values).
constrainAngMom (false) – whether to constrain angular momentum distribution; if

yes, then the solver tries to achieve the discretized distribution of relative angular momen-
tum which corresponds to the given anisotropy coefficient β, using the same inner/outer
values as above, but interpolating them in the energy space. This is similar in effect to
constraining β directly, but operates in the energy space, not in configuration space, and
imposes more demanding constraints if the number of angular momentum bins is more
than two.

numAngMomBins (4) – number of equal-width bins in relative angular momentum
L/Lcirc(E).

numSamplingPoints (0) – number of sampling points from each orbit that are stored
in .smpl file. They are drawn randomly from the trajectory after orbit integration, and
later used in creating N -body model from Schwarzschild model, so if one doesn’t need
this feature, this number may be set to zero.

[Common] is the section for global parameters.
WorkDir – default working directory name (for GUI file open/save dialogs).
TempDir – directory for temporary files used to exchange data with external programs

(qdelaunay and bpmpd).
MaxThreads – number of parallel threads in orbit library integration (0 is default,

equal to the number of processor cores).
useBPMPD (true) – whether to use external solver bpmpd.exe for linear/quadratic

optimization problem. It is a lot faster on large problems than GLPK, and may handle
quadratic problems (preferred mode), but the publicly available version is limited to
small problems (approx.250 orbits). You may ask the author, Csaba Mészáros, for the
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unrestricted version (as did I:-). If this option is turned off, or if bpmpd.exe executable
is not present in the application dir, then GLPK library is used as the linear solver and
CVXOPT, written in Python, as the quadratic solver (if the program was compiled with
its support; to use CVXOPT also for linear problems pass 0 as regularization parameter
in the quadratic solver).

4.2 Orbit library file

This is the main exchange format used for keeping orbit initial conditions and integra-
tion/classification results. This file type is also used to export data to N -body model
(if this is requested in addition to creation of binary nemo snapshot file), and to load
particles representing N -body or BSE potential (in this case only 7 first fields are used).
Each line contains the following data:
x y z vx vy vz weight weightprior inttime maxtime timeunit. . .

. . . energy ediff lfx lfy lfz lfdiff lambda description . . .

. . . inertx inerty inertz Lxavg Lxvar Lyavg Lyvar Lzavg Lzvar . . .

. . . L2min L2slope fitscatter fitsignificance L2circ

First 7 fields are orbit initial conditions and mass (which means orbit weight in
Schwarzschild model, so it may be zero), in the same order as in the simple N -body
interchange file (Sec. 4.4.1). This is, generally speaking, sufficient to load any text file
containing this data as initial conditions for orbit library, although if no timeunit is pro-
vided, it will be calculated on-the-fly in the corresponding potential, which takes some
time if the number of orbits is large. For 2d orbits z and vz are zero. The other fields
are either directly derived from initial conditions or are results of orbit integration and
analysis.
weightprior is the “expected value” of orbit weight if all orbits were equally probable.
Makes sense if the initial conditions used non-uniform sampling (if weightSkewFactorE or
weightSkewFactorL are non-zero). If it is omitted then all orbits are assigned a uniform
prior.
inttime is the integration time (in common time units, not in periods), and maxtime is
upper limit on adaptive integration time (!temporarily defunct!).
timeunit is the dynamical time (period of long-axis orbit with the same energy) which
serves as the unit of time and frequency for this orbit (same as Torb in GUI); energy is
(initial) total orbit energy (or Jacobi constant in the case of figure rotation), and ediff

is energy conservation error.
lfx, lfy and lfz are the leading frequencies in three coordinates, and lfdiff is the
Frequency Diffusion coefficient.
lambda is the Lyapunov exponent (if it was calculated, otherwise −1).
description is the text string containing orbit class and possibly “chaotic” attribute
(based on analysis of spectrum, not a reliable estimate, see Sec. 6). This text line has
underscores instead of spaces, in accordance with the requirement that any space- or tab-
separated file may be loaded.
inert{x/y/z} are the mean-square values of each coordinate, basically these quantities
measure the extent of an orbit in each direction (average, not maximal).
L*avg and L*var are average value and mean-square scatter of angular momentum about
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each axis.
L2min and L2slope are coefficients in the linear regression fitting the distribution of
squared angular momenta at pericenter passages. If L2min=0 this means that the orbit
is centrophilic. The next two parameters, fitscatter and fitsignificance, assess the
quality of fit (see Sec. B.5 for the details of the algorithm). L2circ is an approximate
squared angular momentum of a circular orbit with this energy (useful scaling parameter
for L2min).

The orbit data make sense only in conjunction with corresponding potential, so each
orbit library file is accompanied by INI file. Upon import, first INI file (if exists) is read,
the potential is initialized, then the orbit library is loaded. Exporting orbit library also
creates INI file.

4.3 Binary files

There are two kinds of binary files used in Schwarzschild modelling module: one (.schw)
contains the data for SM (its content depends on the variant of SM chosen), the other
(.smpl) contains sample points from trajectory of each orbit, used to generate an N -body
snapshot from a SM .

Two alternatives for binary data storage are implemented: the first is a structured
HDF5 file, the second is a simple binary array dump (the code can be compiled with
only one of these variants). HDF5 is a preferred storage model as it is more portable and
commonly used.

If HDF5 is used as the back-end for data storage, the format is the following. For
the Schwarzschild data file, orbits are stored in the dataset /Schw of compound records,
in which each data block is represented as a fixed-length array of necessary size with
the name of this data object. That is, for a BSE density model with 20 radial terms and
lmax = 4 (i.e. 6 angular terms), it will be (a) an array of 20×6 floats with the name SHBSE,
(b) for the shell-kinematic data with 25 radial shells, another array of 25×3 floats with the
name KinematicShell (the 3 numbers being the time spent in the shell, and radial and
tangential velocity dispersions), and (c) for the angular momentum distribution with 4
bins, and array of 4 floats with the name AngularMomentum. All orbits are required to have
the same set of Schwarzschild data objects. In the future, additional types of Schwarzschild
data objects may be stored using the same named scheme. For the trajectory sample file,
the dataset /Traj contains a variable-length array for each orbit, the elements of this
array being a 6-float compound record (3 for Pos and 3 for Vel); number of sampling
points may vary between orbits. Both .schw and .smpl files have additional extension
.h5.

In the alternative case of a “proprietary” data storage model, files have the following
format. In the Schwarzschild data file, for each orbit the number of data objects is written
as 4-byte integer, then for each object its type and size are stored as 4-byte integers,
followed by the bulk data array of floats. In the trajectory sample file, for each orbit
the length of sample npoints is written (4-byte integer), then the array of 6× npoints floats
representing the position and velocity points is stored.
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4.4 Auxiliary text files

All text files should be tab- or space-separated. Lines starting with symbols # % are
ignored.

4.4.1 Point file

This is a simple text file for loading/storing point mass sets: each line contains
x y z vx vy vz m

It is used as an input data for initializing BSE/Spline/treecode N -body potentials, for
exporting N -body model in a text format, and also may be used to load initial conditions
for orbit library / Schwarzschild model, since it is a truncated version of orbitlib file
(Sec. 4.2).

4.4.2 Ellipsoidal or Spherical model file

The Ellipsoidal mass model, which may be used as an input to BSE or Spline potential,
is a very generic representation of arbitrary density profile with arbitrarily varying axis
ratios. It is given by a text file containing pairs of r M(r) values describing dependence of
enclosed mass on radius; each line may also contain two more values which are taken for
axis ratio at a given radius. The density of a spherically symmetric model is calculated
as a spline interpolation of density profile from the first two columns (log scaled in both r
and ρ). Axis ratios are also spline interpolated in log radius between the provided radial
points, and assumed to be constant below the first and above the last radii with provided
values. If only one line with axis ratio values is present, they are assumed to be constant.
If no values are provided the model is considered to be spherical. The first line of the file
should contain the text Ellipsoidal.
To compute the actual density at a given x, y, z, first the spherical radius is computed;
then the interpolated values of q, p are calculated and the three coordinates are scaled
accordingly, so that the product of three scaling coefficients is unity. In other words,
s ≡ (qp)−1/3 is the common scaling factor, and the elliptical radius is computed as r̃2 =
(x/s)2 + (y/sq)2 + (z/sp)2. The density is then given by spline interpolated ρ(r̃). By
construction, the total model mass is not exactly equal to the mass of spherical model
given in the last line of the text file, but is typically very close to it.

Spherical mass model is a simplified case of Ellipsoidal where q and p are unity and are
not provided in the file. It corresponds to a Spherical potential (which behaves similarly
to Spline potential with lmax = 0). The file extension should be .mass and its first line
does not need to contain anything special (in fact, all lines not starting with a number
are ignored).

4.4.3 Multi-Gaussian expansion file

Another generic representation of an arbitrary density profile is the Multi-Gaussian ex-
pansion, in which density is given by a sum of Ncomp components, each being a triaxial
Gaussian with a given scale length and normalization. This file may be used as an input
to the BSE or Spline potential expansion. The first line of the text file should contain
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the word MGE, and each line contains the data for each component: rs M and optionally
q and p, where rs is the scale radius, M is the mass in this component, and the other two
values give the axis ratios. The density profile of the component is thus given by

ρ(x, y, z) =
M

(2π)3/2pq r3
s

exp

[
−x

2 + (y/q)2 + (z/p)2

2r2
s

]
(1)

If one has a MGE in the observer’s units (central luminocity density Σ in L�/pc2, width
of the component σ in arcsec, and the projected flattening q′), then the mass of each
component is given by 2πr2

sq
′ΣΥ, where rs = 0.485(σ/1′′)(D/1Mpc) pc is the width of

the component in physical units, and Υ is the mass-to-light ratio.

4.4.4 Potential coefficients file

Stores coefficients for BSE, Spline and Scale-free SH potentials. This file is automatically
created when a potential is initialized from a point mass set, and later may be used to
load the same potential without spending time on computing the coefs. The first few lines
are the header:
BSEcoefs/BSECcoefs/SHEcoefs/CylSpline/SFcoefs – specifies potential type (BSE,
BSECompact, Spline, CylSpline, or Scale-free SH);
n_radial – number of radial coefs or radial grid points, correspondingly;
n_angular – lmax, order of angular spherical-harmonic expansion; 0 means just one coef-
ficient for a spherically symmetric model, or an axisymmetric CylSpline;
alpha – shape parameter for BSE potential, or Rmax – radius of compact support for
BSECompact, or Gamma – exponent for Scale-free SH, or n_vertical – number of coeffi-
cients in z direction for CylSpline, or unused for Spline;
time – presently unused;
#commented out line (except CylSpline; text header for the table below).
The rest of file is the coefficients table with the format depending on the potential type.
For BSE/BSECompact/Spline/Scale-free potential all angular coefficients for a given ra-
dial index (BSE) or radius (Spline) are written in one line. First number is radial coeffi-
cient index or radius, second is the l = 0 coef (spherical part), and so on. If the number
of fields in a line is less than 1 + (nangular + 1)2, the rest is filled with zeroes; if it is greater
then the rest is ignored (so one may adjust the numbers in header without changing the
table). For Scale-free potential there could be only one radial coefficient.
For CylSpline the format is somewhat different: the file consists of several blocks that
list two-dimensional coefficients for a given azimuthal harmonic m; there could be at
most 2lmax + 1 such blocks, but the blocks with all zeroes may be omitted. Each block
is preceded by a line with the value of m; then a line with the list of radial grid points
(starting from zero and preceded by #z\R); then 2nvertical − 1 lines for the z grid (it con-
tains symmetrically positive and negative values of z, and the values of coefficients are
usually symmetric w.r.t. change of sign of z). Each line starts with the value of z for the
vertical grid node, then nradial values of coefficients. For the m = 0 harmonic these are
just the values of the potential in the meridional plane.

The coefficients file extension typically corresponds to the potential type as follows:
.coef_bse (BSE), .coef_bsec (BSECompact), .coef_spl (Spline), .coef_cyl (Cyl-
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Spline), .coef_sf (Scale-free SH); this ensures a correct determination of file type when
using the simplified interface of smilepot library.

4.4.5 Orbit file

This file type is used to export or import trajectory; each line contains the following data:
time x y z vx vy vz

Upon import of such file, the orbit is assigned initial conditions from the first line,
and all the relevant parameters (energy, dynamical time Torb and unit of frequency) are
calculated from the current potential parameters (which, however, are not stored along
with the orbit).

May be useful to import an orbit recorded from N -body simulation, with potential
expressed as frozen-N -body or BSE taken from density profile from the same simulation,
and check how does this orbit look like if re-integrated in a fixed potential.

4.4.6 Schwarzschild grid statistics file

Used for export only, this file contains statistical information about Schwarzschild model
grid (and hence can be created only when a model is created or loaded). For the den-
sity constraint block, the following values are written (one constraint per line): index

required actual diff norm {decomp},
index is just the index of the constraint;
required is the required value of this constraint in the density model (e.g. the mass in
the given cell of the Classic SM);
actual is the value obtained by the orbit superposition;
diff is the difference between these two (best if zero);
norm is the normalization factor used to scale the contribution of constraint deviation to
the penalty function;
chaos is the fraction of chaotic orbits that contribute to this constraint;
numorbits is the total number of orbits that could in principle contribute to this con-
straint (have a non-zero matrix element for this index);
numorbitsnonzero is the number of orbits that actually do so because they have a posi-
tive weight in the model;
decomp is the decomposition of index into readable numbers: for the Classic and Cylin-
drical models, it is the radius and x, y, z values of the cell center; for the SHGrid model, it
is the radius and l,m indices of angular expansion; for the BSE model, it is n, l,m triplet
of basis function indices.
For the kinematic constraint block, the following data is written for each radial shell:
index radius M(r) sigma_r^2 sigma_t^2,
where M(r) is the enclosed mass in this shell, and σ’s are the radial and tangential velocity
dispersions from the orbit superposition in this shell.

4.4.7 Potential sampling file

Used for export only. Each line contains potential (Phi), density (Rho) and forces (F)
sampled at a given point.
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x y z Phi Fx Fy Fz Rho

Points are logarithmically spaced in radius from 0.001 to 1000 and lie along seven
lines: principal axes, diagonals of principal planes (z = 0, y = x, etc.) and the diagonal
x = y = z. NB: if an orbit library was non-empty, ExportPotential("...") also
creates another file in the same format with additional extension .points, containing
potential/force/density sampled at locations of points in orbit library. This data may be
useful, for example, to test the accuracy of BSE/Spline approximation.

4.5 N-body snapshot files

An N -body snapshot used to initialize the BSE, Spline or Frozen-Nbody potential, or
created as the representation of the Schwarzschild model, may be in one of the supported
formats. Presently, there are the following options available: a text file (Sec. 4.4.1), a
nemo snapshot format, or a Gadget snapshot file. The latter two options are available
if the program was compiled with the UNSIO library; however, export to nemo format is
possible without this library, using built-in routines. Reading a snapshot file during the
potential initialization determines the file format automatically.

5 A short guide to practical Schwarzschild modelling

One of main applications of smile is to create equilibrium N -body models with a pre-
defined triaxial density profile (and possibly a given velocity anisotropy profile). Here we
outline the necessary steps and checks to be made.

• Choose a density profile out of existing variants, or implement one as an Ellipsoidal
or MGE mass model described by a text file. One may also use an N -body snapshot
as a Monte-Carlo realization of a density profile; however it is less preferable due to
inherent discreteness noise which translates into fluctuations of high-order potential
expansion coefficients.

• Use BSE, or, preferrably, Spline potential solver with appropriate number of coeffi-
cients. For strongly flattened systems such as disk galaxies, CylSpline provides the
most accurate representation. For the number of radial coefficients, 20 is a good
choice in most situations; for the angular order, it depends on the degree of flatten-
ing. A moderately flattened model with y/x, z/x & 0.5 is fine with lmax = 6−8, more
flattened systems require more. With CylSpline, the number of angular coefficients
depends on the degree of triaxiality (0 is for axisymmetric model with arbitrary
flattening in z direction). A good way to check whether the approximation works
well is to export a file with potential, forces and density sampled at coordinate axes
and/or given set of points (Sec. 4.4.7) and compare density with the expected pro-
file. At the very least, it should not oscillate wildly and drop to zero at some finite
radius (a warning will be given if this is violated). Another possibility is to use the
testaccuracy utility (Sec. C.3).

• Construct a SM with some fiducial number of constraints and orbits. A good
starting choice is 104 orbits for a few×102 constraints, e.g. 20 radial shells and

27



2 − 3 lines per segment (in case of Classic SM) or lmax = 6 − 8 (for SHGrid SM).
Use Quadratic optimization solver to obtain orbit weights. The weight distribution
should ideally be fairly flat and close to uniform.
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In the example above, the innermost orbit weights are distributed quite well (many
orbits with nonzero weights), while the outermost parts of model are overcon-
strained, which results in quite a few orbits with large weight. This situation may
be remedied by using more orbits for the same number of constraints.
For some cases, a model with a given density and flattening profile may not be fea-
sible at all, no matter how many orbits one has. In this case, allowing the flattening
rate vary with radius, so that in the outer parts it is close to axisymmetry, may
alleviate the problem.
Overall, the very first condition for a good model is its feasibility (that all constraints
are satisfied), and the second is to be underconstrained, so that many orbits are
given a similar weight and not just a few outstanding orbits are protruding above
the rest. The latter situation is not only dissatisfying aesthetically (one may clearly
see these high-weight orbits in the N -body realization), but also unwelcome for the
stability of the model. Therefore, it is better to have a model with fewer constraints
and a “relaxed” weight distribution, than the one in which a multitude of constraints
are barely satisfied with a few orbits.

• Export the model to N -body snapshot. Again, ideally one should not have too
many sampling points per orbit, say, . 100 for all but a few orbits. This means
that, for instance, to get a 106 particle model, one will need few×104 orbits with a
reasonably flat weight distribution.

This can be summarized by the following script for the console version (assuming that
all relevant parameters are specified in the .ini file):

# read input parameters

LoadIni("model.ini")

# create orbit library and Schwarzschild model data, this takes most of the time

BuildSchw

# save results, orbit weights are not assigned yet

ExportModel("model")

# do the optimization
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SchwQuadratic

# save results once again, now with orbit weights

ExportModel("model")

# export model to a NEMO N-body snapshot

ExportNbody(1e5, "model_nb", "Nemo")

6 Known bugs, subtleties and limitations

• All analytic density models assume triplanar symmetry w.r.t. change of sign of any
coordinate. For the general-purpose expansions (BSE/Spline) and frozen-N -body
potential it is not necessary: one may choose the desired level of symmetry for the
expansion. If initializing it from a discrete set of points, it is crucial that the density
center is at origin (except for N -body potential, however even for it this is necessary
in order for orbit analysis to work properly), and principal axes of figure should be
directed along x, y, z as longest to shortest: while the spherical-harmonic expansion
should be invariant to rotation (at least when symmetry type is downgraded to
“Reflection”) the correct ordering of axes is important for orbit analysis. General-
purpose expansions and the entire SM module are agnostic to mass normalization of
model, but the length scale (typical half-mass radius) should be of order unity (i.e.
not too much off, say by a factor of 10), because a number of design choices break
the invariance. Therefore, it is recommended to work in dimensionless, N -body
units, rather than in parsecs, for example.

• BSE/Spline expansions assume smooth density profiles and a power-law density
behaviour at r → 0 with the index 0 ≤ γ < 2 (they still work pretty well for
γ = 2, but not for steeper profiles which have divergent potential at origin). Inner
and outer density asymptotics are assumed to be power-laws, which may introduce
some systematic errors for other type of profiles (such as Sérsic), but they are
negligible for a sufficient number of terms. Density is assumed to fall monotonically
with radius. This also means that any user-defined density profile should be devoid
of sharp jumps or abrupt drops to zero, unless you are using the BSECompact or
CylSpline expansions which have a finite radial extent.

• Chaotic attribute in the orbit description should not be relied upon (it is added
when there are lines in spectrum that cannot be fitted as a linear combination of no
more than N dim fundamental frequencies, but sometimes the accuracy demanded
might be too stringent or too weak). A better indicator is the Frequency Diffusion
parameter or Lyapunov exponent. Moreover, in the case of two very nearby spectral
lines the method often gets confused and assigns “chaotic” attribute (and even a
rather high frequency diffusion rate) to a regular orbit. This typically may be
overcome by setting a longer integration time, to better resolve these nearby lines.

• Scale-free potential and its BSE approximation are implemented only for 0 ≤ γ < 2.
In addition, variation equation option for computing Lyapunov exponent is not
implemented for scale-free potential, only for its BSE variant. This is not a severe
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restriction, as the approximation works fairly good and much faster, so it is the
preferred option.

• Computing Lyapunov exponent by integration of nearby trajectory is possible for
all potentials (except N -body, of course), and this is the recommended option
(calcLyapunovMethod=1 in the INI file), since it is usually faster than variation
equation approach. Only for orbits close to the black hole may it give incorrect re-
sults: a regular orbit seems to have nonzero Lyapunov exponent, which is probably
due to roundoff errors in keeping these nearby orbits really near. So to study these
orbits, one should use “true” variation equation approach (Update: even in this case
“chaotic” attribute may be triggered on erroneously for some tightly-bound orbits,
requires further study).

• Since floating-point values are stored in text format (in Orbit Library file), some-
times it may happen that re-integration of the same orbit gives a different result.
(This definitely may happen if Lyapunov exponent is used, since the deviation vec-
tor is initalized randomly). Although some measures were taken to diminish the
possible damage of this effect, one should still keep it in mind. In addition, orbits
with the same initial conditions may be different on different machines.

• Inner and outer extrapolation in Spline potential is not twice continuously differen-
tiable at the first/last grid nodes; this may trigger false positive Lyapunov exponent
for an orbit which extends beyond the last grid node. (Perhaps a lower-order inte-
grator could be used for this potential).

• On 32-bit systems, there seems to be an issue with inefficient memory management
which leads to fragmentation of the application heap during Schwarzschild model
construction; as a result, the program may run out of memory even if the orbit
library size is not very large and could well fit into the 2Gb limit.

• Energy conservation is far from perfect for orbit integration in the N -body po-
tential with adaptive softening length; it is somewhat improved by using timestep
symmetrization.

7 Version history and future plans

• 1.0 (2010), 1.1 (2011) – for internal use only.

• 2.0 (July 2013) – first public release.

• 2.5 (January 2015) – major update:

– New potential and density models, in particular, Cylindrical spline expansion;

– New methods for generating initial conditions; refinement in energy and angu-
lar momentum;

– New orbit integrators (IAS15, Hermite, odeint family);
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– Multi-component potential and Schwarzschild models;

– Figure rotation;

Ideas waiting to be implemented:

• Observationally-driven Schwarzschild modelling;

• Option for using modified Newtonian gravity;

• Implementation of orbit integrator using GPU acceleration;

• Refactor the computation core and parallelization strategy to migrate from Qt
threads to OpenMP plus optionally MPI;

A Program structure and compilation

The main program is written in C++ using the Qt framework (for the GUI and for other
features like inter-object and inter-thread communication), so it should compile wherever
Qt is supported (at least Linux, Windows, and MacOS). Some mathematical parts (in
particular, orbit integration and analysis, potential solvers, spherical models) do not use
Qt and may be used independently in other programs.

In addition, a number of other libraries and software is used in smile (optional compo-
nents are marked with *): GSL (GNU scientific library) is mandatory for the entire pro-
gram; (*) interp2d (GSL-like interpolation library) is required to use cylindrical spline and
other disk-related features (cylindrical Schwarzschild grid, axisymmetric Jeans equation,
etc.). Schwarzschild modelling requires at least one of the following libraries: (*)GLPK
(GNU linear programming kit, if this option was selected as the optimization routine),
(*)CVXOPT (quadratic optimization solver, requires Python) and/or (*)BPMPD solver
(as a standalone application); the latter option is the fastest one but is not publicly avail-
able, while the first two are comparable in speed and are free software). Data input/output
optionally uses (*)nemo, (*)UNSIO and (*)HDF5 libraries. GUI version needs Qwt (ver-
sion 5.x, not 6) and (*)QwtPlot3d2libraries for plotting, and (*)qdelaunay program from
QHull package (to render an orbit as a solid body). Console version benefits from the use
of (*)readline library (installed on most UNIX systems).

Build is typical for Qt applications – check the project include file smile.pri (common
for GUI and console versions) for correct paths to libraries (INCLUDEPATH, LIBS), run
qmake (from qt4!), then make. There is a global Makefile, which compiles both versions
of smile, the smilepot library, and additional programs described in Sec. C; you may
try it.
On Mac, one might need to run qmake -spec macx-g++ to use GNU compiler.
qdelaunay (compiled separately) and bpmpd.exe should reside in the main application
folder (the latter is windows-only binary, so it is run using wine in Linux/MacOS).

The architecture of smile is rather modular and flexible, with common interfaces
between various parts allowing for replacement of internal implementation or augmenting

2On some systems, it may be called qwtplot3d-qt4

31



the functionality. More information on the internal structure of the software can be found
on the documentation webpage: http://td.lpi.ru/~eugvas/smile/doc/.

This program includes code from Hairer et al. dop853 and Rein&Spiegel’s ias15 ODE
integrators, substantially reworked tree-force potential solver hackcode by J.Barnes
from nemo toolbox, and simplified nemo snapshot writer by S.Rodionov. Everything
else is written from scratch. You may use any part of the program in any your project.

A.1 smilepot library

To facilitate the use of the extensive and flexible framework for representing potential
and forces in other programs, a subset of the smile codebase is included in a separate
library libsmilepot. It comprises the code for dealing with potentials and spherical
mass models, reading of potential coefficients files (Sec. 4.4.4) and N -body snapshots (to
compute these coefficients from a set of points), and parsing the potential parameters
from the [Potential] section of an INI file (Sec. 4.1). The library has simplified C
and Python interfaces that allow to initialize the potential from the parameters from
an INI file, or by specifying its parameters directly, and provide functions for computing
potential, density, forces and force derivatives.

The C/C++ interface is accessed by including the file smilepot.h and offers
several way of constructing the potential: smilepot_create("params.ini"), tak-
ing the parameters from an ini file, or smilepot_create("file.coef_spl"), load-
ing potential coefficients (in this case for a Spline potential) from a text file;
smilepot_create_params, using parameters provided as a list of ”key=value” arguments;
or smilepot_create_from_particles, constructing a potential expansion from an N -
body snapshot. Of course, C++ programs may additionally include some other header
files and access the entire smile machinery related to potential creation and manipulation.

The Python interface is accessed by importing py_smilepot.py and creating an
instance of py_smilepot.smilePot class, which has methods like potential, density,
force, using a list of keyword=value parameters for the constructor. One may either take
the parameters from an INI file with file="file.ini", or specify the potential type and
all relevant parameters directly, like type="Spline", density="Dehnen", Gamma=1.5,

mass=42.0, scalerad=0.1234, q=0.9, p=0.75

See readme_smilepot.pdf for a more detailed usage description.

B Technical details on the algorithms and formulae

used

B.1 Frequency analysis and orbit classification

Orbit classification is based on detection of most prominent spectral lines in Fourier
spectrum of trajectory in each coordinate. Here we summarize the method used to extract
spectral lines.

We start from computing complex Fourier transform ci, i = 0..[N/2] of input time
series xk, k = 0..N − 1. At each iteration, we locate the most prominent line in the
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spectrum and then subtract it from ci, until the maximum number of lines has been
reached or the amplitude of lines drops below a certain fraction of the amplitude of the
first line. First we locate the integer index m so that |cm| has the maximal value over
the remaining spectrum, and then find a fractional correction s so that the exact location
of line is m + s. If possible, the correction is determined by a more precise method of
Hunter(2002) [12] with Hanning window filtering; if not a more approximate method of
Carpintero&Aguilar(1998) [13] is used. [TODO: explain more details].

After all prominent lines have been determined for all d coordinates, we search for at
most Nd fundamental frequencies Ωk so that all line frequencies are expressed as linear
combinations of these (within a certain tolerance): ωd,j =

∑Nd

k=1 adjkΩk with integer adjk.
If no such decomposition is possible then an orbit must be chaotic (or the frequencies
were not properly determined, which may happen if two lines are too close to become
aliased) and labelled as such (this attribute does not rely on frequency diffusion rate or
Lyapunov exponent and is in general a less reliable chaos detector). Furthermore, if the
most prominent lines in each coordinate happen to be in resonance (

∑Nd

d=1 rdωd,0 = 0 with
integer rd), the orbit is called a thin (r1, r2, r3) orbit. If one of these integers is zero then the
orbit is a commonly defined “resonant” orbit (e.g. an orbit with r1 = 2, r2 = −1, r3 = 0
is a 1:2 banana in x− y plane which may have some non-resonant motion in z direction).

Orbits that conserve the sign of any component of angular momentum are called
tubes; they usually correpond to 1:1 resonance in the plane perpendicular to that of the
conserved component, although the converse is not generally true (a weakly chaotic orbit
may look like a resonance but flip the sign of angular momentum). Note that under certain
conditions, more than one component of angular momentum may conserve sign, although
it usually indicates that the orbit has not been integrated long enough (may happen in
the vicinity of the central black hole, where the precession period is much longer than the
period of radial motion).

In the near-Newtonian potential box orbits usually are replaced by pyramids, and some
short-axis tubes are non-symmetric about the x− y plane and are called saucers. Long-
axis tubes are further divided into inner and outer subfamilies, based on the detection of
“waist” near y − z plane (not always robust). All in all, there are many classes of orbits,
most common being SAT, LAT (inner), LAT (outer), box, various kinds of thin orbit

and resonance, and, near the central black hole, pyramid and saucer orbits. SAT orbits
are further analyzed for the resonances between radial and angular frequencies, and may
be denoted as inner or outer Lindblad resonances (ILR/OLR), if the radial frequency is
twice the angular frequency (depending on the sign of the latter), or corotation resonance
(CR) if the angular frequency is zero (possible only in the case of rotating frame). In
the rotating frame, all SAT orbits are also divided into prograde and retrograde classes,
based on the sign of z component of angular momentum.

B.2 Spherical mass models

A spherical model is specified by an array of N pairs: ri,Mi, i = 1..N , where Mi ≡
M(< ri) is enclosed mass, and M0 ≡ M(r = 0) is the central point mass (possibly zero).
Alternatively, for Spline potential model we have pairs of ri,Φi giving potential as a
function of radius (excluding the central point mass). We assume that density is a power-
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law function of radius inside r1 and outside rN , with slopes γin and γout, correspondingly.
Spherical models are used throughout smile in several flavours: (a) as a base for Spline
spherical-harmonic potential approximation (in this case the input data is r,Φ(r) and up
to second derivative of Φ must be continuous), (b) directly as a Spherical potential, (c) to
calculate the distribution function via Eddington inversion for a model given by r,M(r)
– this is used to generate initial conditions for Schwarzschild model, to compute the
velocity perturbations mimicking the effect of two-body relaxation, and in the standalone
tool mkspherical (Sec. C.1).

The total mass M∞ can be estimated by the following argument. Integrating the
density from r to ∞ we get

M(r) = M∞ −K r3−γout , Φ(r) = −M∞
r

+
K

2− γout

r3−γout (2)

with constants M∞, K, γout to be determined. Writing this for the last three points we
obtain the relation

ln
M∞ −MN−2

M∞ −MN−1

ln
rN−1

rN
= ln

M∞ −MN−1

M∞ −MN

ln
rN−2

rN−1

(3)

This becomes especially simple if r2
N−1 = rN−2rN , in which case

M∞ =
MNMN−2 −M2

N−1

MN +MN−2 − 2MN−1

(4)

This relation is used to estimate total mass for a given density model which provides a
smooth function M(r), by constructing successive approximations to M∞ at r, 2r, 4r, . . .

In the more general case, it is easier to find γout first, numerically solving

MN −MN−1

MN −MN−2

=
r3−γout

N−1 − r3−γout

N

r3−γout

N−2 − r3−γout

N

(5)

If we have Φi instead of Mi, then in the above formula we replace Mi by −Φiri. Then
M∞ is given by

M∞ =
MNr

γout−3
N −MN−1r

γout−3
N−1

rγout−3
N − rγout−3

N−1

(6)

And finally, K is obtained from (2).
The inner density profile may require more elaborate treatment. Without loss of

generality we set M0 = 0 (a central point mass may be added trivially). Basically we
need to find the density slope γin, assuming that density behaves as ρ ∝ Ar−γin(1−B r).
Then

M(r) = Ã r3−γin(1− B̃ r) , Φ(r)− Φ(0) = Â r2−γin(1− B̂ r) (7)

Here tilde/hat quantities are trivially related to A,B (we do not write it down because
we need only γin).

γin = 3−

[
ln
M2

M1

− ln
1− B̃r2

1− B̃r1

]/
ln
r2

r1

= 2−

[
ln

Φ2 − Φ0

Φ1 − Φ0

− ln
1− B̂r2

1− B̂r1

]/
ln
r2

r1

(8)
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If we are happy with taking into account only the leading term (setting B = 0), then
the slope is trivially obtained from the above equation. However, the slope will usually
be underestimated if the radii are not too small. To get a more accurate estimate, first
we compute B by solving(

ln
M2

M1

− ln
1− B̃r2

1− B̃r1

)
ln
r3

r1

=

(
ln
M3

M1

− ln
1− B̃r3

1− B̃r1

)
ln
r2

r1

(9)

with a similar modification for Φ. Then substituting B into (8) we obtain γin. This way
we use 3 instead of 2 innermost points (r0 = 0 doesn’t count), but obtain generally a more
accurate estimate for the slope (factor of & 2 closer to the true one). This is [presently?]
only used for Spline potential approximation, not for r −M(r) models.

The rest of this section is devoted to the spherical model given by r,M(r) pairs, which
must be smooth enough to give a reasonable f(E) via Eddington inversion formula. The
model is initialized by fitting a cubic spline to the scaled quantities r̃ ≡ ln r, M̃ ≡
ln[M(r)/(M∞ −M(r))], where M∞ has been found from (6). The endpoint derivatives
are set by hand (i.e. the spline is not “natural” but “clamped”) from the power-law
extrapolation of density profile at small and large radii with slopes γin and γout, estimated
from (5) and (8) with B = 0.

For the case γin = 0 an additional step is needed to accurately represent the behaviour
of distribution function at origin (since it depends on d2ρ/d2Φ and the potential is close
to parabolic, with its second derivative close to a constant). This matters only for the
construction of spherical models via Eddington inversion formula, and is irrelevant for the
potential approximation. If the estimated γin < 0.1, we assume that it is zero and instead
take ρ(r) = ρ0(1− Prα) and find the three parameters from three innermost grid points:

M(r) =
4π

3
ρ0r

3
(
1− 3

α+3
Prα

)
, Qk1 ≡

r3
1 Mk

r3
kM1

=
1− 3

α+3
Prαk

1− 3
α+3

Prα1
, k = 1, 2, 3

α is found from (1−Q21)(rα3 −Q31r
α
1 ) = (1−Q31)(rα2 −Q21r

α
1 ) (10)

and then P = α+3
3

1−Q21

rα2 −Q21rα1
(11)

In the case γin > 0, ρ(r) is extrapolated to r < r1 using simple power-law: ρ(r) =
(3 − γin)M(r)/(4πr3). The extrapolation to r > rN is equally simple: ρ(r) = (γout −
3)Kr−γout/(4π).

The potential is evaluated at the grid points ri by integrating
∫ r

0
M(x)/x2, including

the contribution of central point mass if present. Let Φ0 ≡ Φ(0) be the potential at origin,
ifM0 > 0 then Φ0 = −∞. The scaled potential is defined as Φ̃ ≡ − ln[1/Φ0−1/Φ(r)] and it
is represented as a spline function in r̃ ≡ ln r. Again the endpoint derivatives are evaluated
from the asymptotic expressions and supplied to the clamped spline initialization.

To compute the distribution function, one needs to integrate d2ρ/dΦ2. We represent
ρ(Φ) as a spline in scaled variables ρ̃ ≡ ln ρ and Φ̃, computed at grid nodes Φi ≡ Φ(ri).
The accurate extrapolation beyond grid is crucial. For Φ → 0 we simply substitute
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Φ ≈ −M∞/r to ρ(r) ∝ r−γout , and for Φ→ Φ0 a more elaborate expression is needed. In
the case of a constant-density core,

dρ

dΦ
= −3αP

4π

(
3

2πρ0

)α/2−1

(Φ− Φ0)α/2−1 . (12)

Otherwise, we find r(Φ) numerically and then substitute power-law asymptotes for ρ(r)
and Φ(r) as r → 0.

The derivatives of ρ(Φ) are computed from the log-scaled spline as follows:

dρ

dΦ
=

dρ̃

dΦ̃

ρ

Φ(1− Φ/Φ0)
, (13)

d2ρ

dΦ2
=

ρ

Φ2(1− Φ/Φ0)2

[
dρ̃

dΦ̃

(
2

Φ

Φ0

− 1

)
+

(
dρ̃

dΦ̃

)2

+
d2ρ̃

dΦ̃2

]
(14)

The distribution function is computed by the Eddington inversion formula:

f(E) =
1√
8π2

∫ 0

E

d2ρ

dΦ2

dΦ√
Φ− E

(15)

It is evaluated at grid points Φi and then its logarithm is approximated by a spline in
Φ̃. This quantity may turn out to be negative at some points, in this case the point
is excluded from the spline initialization (i.e. the approximated quantity will always be
positive), but an error indication is given.

B.3 Spherical-harmonic and other potential expansions

BSE and Spline potentials share the representation of angular dependence of potential and
density via spherical-harmonic expansion. We use the real-valued trigonometric functions
instead of eimφ and introduce the convention that m < 0 terms correspond to sine and
m ≥ 0 – to cosine terms. Moreover we introduce another factor of

√
2 inm 6= 0 coefficients,

to make the sum of squared coefficients at a given l invariant under rotations of coordinate
system. Define

ρ(r, θ, φ) =
lmax∑
l=0

l∑
m=−l

Alm(r)
√

4πP̃m
l (cos θ) trigmφ (16)

Φ(r, θ, φ) =
lmax∑
l=0

l∑
m=−l

Clm(r)
√

4πP̃m
l (cos θ) trigmφ

trigmφ ≡


1 , m = 0√

2 cosmφ , m > 0√
2 sin |m|φ , m < 0

Here P̃m
l (x) ≡

√
2l+1
4π

(l−m)!
(l+m)!

Pm
l (x) are normalized associated Legendre polynomials.
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For the force calculation we need the first derivatives of potential:

∂Φ

∂r
=

lmax∑
l=0

l∑
m=−l

∂Clm(r)

∂r

√
4πP̃m

l (cos θ) trigmφ

∂Φ

∂θ
=

lmax∑
l=0

l∑
m=−l

Clm
√

4πP̃m ′
l (cos θ) (− sin θ) trigmφ (17)

∂Φ

∂φ
=

lmax∑
l=0

l∑
m=−l

Clm
√

4πP̃m
l (cos θ) trig′mφ , trig′mφ ≡

{
−
√

2m sinmφ , m ≥ 0√
2m cosmφ , m < 0

For the variation equation we need second derivatives of potential:

∂2Φ

∂θ2
=

lmax∑
l=0

l∑
m=−l

Clm
√

4π

(
cos θ P̃m ′

l (cos θ)−
[
l(l + 1)− m2

sin2 θ

]
P̃m
l (cos θ)

)
trigmφ

∂2Φ

∂θ∂φ
=

lmax∑
l=0

l∑
m=−l

Clm
√

4πP̃m ′
l (cos θ) (− sin θ) trig′mφ (18)

∂2Φ

∂φ2
= −m2 Φ

(differentiation w.r.t. r is trivial substitution of Clm → ∂C/∂r in Eq. 17).

B.3.1 Basis-set potential expansion for models with infinite extent

In the BSE potential we represent the coefficients Alm, Clm as a weighted sum over basis
functions defined in Zhao(1996) [4]:

Alm(r) =
nmax∑
n=0

Anlm ρnl(r) , Clm(r) =
nmax∑
n=0

Anlm Φnl(r) , (19)

Φnl(r) = − rl

(1 + r1/α)(2l+1)α
Gw
n (ξ) (20)

ρnl(r) =
Knl

2π

rl−2+1/α

(1 + r1/α)(2l+1)α+2
Gw
n (ξ)

Knl ≡
4(n+ w)2 − 1

8α2
, w ≡ (2l + 1)α + 1/2 , ξ ≡ r1/α − 1

r1/α + 1
,

where Gw
n (ξ) are Gegenbauer (ultraspherical) polynomials.

37



The derivatives of basis functions of potential are the following:

∂Φnl

∂r
=

rl

(1 + r1/α)(2l+1)α

(
Gw
n (ξ)

l − (l + 1)r1/α

r(1 + r1/α)
+
dG

dr

)
(21)

∂2Φnl

∂r2
=

rl

(1 + r1/α)(2l+1)α

{
−2

r

dG

dr
+

Gw
n (ξ)

r2(1 + r1/α)2

[
(l + 1)(l + 2)r2/α +

+
{

1− 2l(l + 1)− (2n+ 1)(2l + 1)/α− n(n+ 1)/α2
}
r1/α + l(l − 1)

]}
dG

dr
=

1

2αr

[
−nξ Gw

n (ξ) + (n+ 2w − 1)Gw
n−1(ξ)

]
The basis ρnlm,Φnlm (where [∗]nlm ≡ [∗]nl

√
4π P̃m

l (cos θ) trigmφ) is biorthogonal,
which means that∫

dr ρnlm(r) Φn′l′m′(r) = Inl δnn′δll′δmm′ =

∫ ∞
0

dr 4πr2 ρnl(r) Φn′l′(r) δmm′ (22)

Inl ≡ −Knl
4πα

24w

Γ(2w + n)

n! (n+ w) [Γ(w)]2
(23)

Given a certain density distribution ρ(r, θ, φ), one may find the expansion coefficients
by multiplying (16, 19) by Φnlm(r) and integrating over the entire space:

Anlm =
1

Inl

∫
dr ρ(r) Φnlm(r) =

1

Inl

∫ ∞
0

dr 4πr2 Φnl(r) 〈ρlm〉θ,φ(r) =

=
1

Inl

∫ 1

−1

dξ
8παr3

1− ξ2
Φnl(r) 〈ρlm〉θ,φ(r) , r =

(
1+ξ
1−ξ

)α
(24)

〈ρlm〉θ,φ(r) ≡ 1√
4π

∫ π

0

dθ sin θ P̃m
l (cos θ)

∫ 2π

0

dφ trigmφ ρ(r, θ, φ) (25)

If the density is represented by a set of point masses Mi located at positions ri,
i = 1..N , then the coefficients are evaluated as follows:

Anlm =
1

Inl

N∑
i=1

Φnl(ri) ρlm,i (26)

ρlm,i ≡ Mi

√
4π P̃m

l (cos θi) trigmφi (27)

B.3.2 Basis-set potential expansion for compact models

For models that have finite radius Rmax, we use spherical Bessel functions as the basis
set. In the notation of the previous section,

Φnl(r) = −
√

2αnl
π

jl(αnlr) (28)

ρnl(r) =
α

5/2
nl

4π

√
2

π
jl(αnlr) ,
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where jl(x) are the spherical Bessel functions (e.g. j0(x) ≡ sin(x)/x, j−1(x) ≡ cos(x)/x),
αnl ≡ βnl/Rmax, and βnl are consecutive (in n) roots of the function jl−1(x). For r > Rmax,
the basis functions are just standard multipoles: Φnl ∝ r−l−1. The normalization factors
for the orthogonal basis are

Inl ≡
∫ Rmax

0

dr 4πr2 ρnl(r) Φnl(r) = −β
3
nlj

2
l (βnl)

π
(29)

The derivatives of basis functions of potential (for r ≤ Rmax) are the following:

∂Φnl

∂r
= −

√
2αnl
π

[αnlrjl−1(αnlr)− (l + 1)jl(αnlr)] r
−1 (30)

∂2Φnl

∂r2
=

√
2αnl
π

[
2αnlrjl−1(αnlr) + (α2

nlr
2 − (l + 1)(l + 2))jl(αnlr)

]
r−2

B.3.3 Spherical-harmonic expansion for the scale-free potential

In this case, the density and potential are represented as

Alm(r) = Alm r
−γ , Clm(r) = Clm r

2−γ , (31)

The density profile ρ(r) = (x2 + y2/q2 + z2/p2)−γ/2 is used to compute Alm =
rγ 〈ρlm〉θ,φ(r) using (25). The relation between potential and density coefficients is given
by

Clm =
4π

(l + 3− γ)(2− l − γ)
Alm (32)

B.3.4 Spline spherical-harmonic potential expansion

In the Spline potential the radial dependence of expansion coefficients Alm(r), Clm(r) in
(16) is represented directly as a spline function in (scaled) radius. More specifically, we
define the scaled functions C̃lm as

C00(r) = −[exp(−C̃00(ξ))− 1/C00(0)]−1, ξ ≡ ln r (33)

Clm(r) = C00(r)C̃lm(ζ), ζ ≡ log(1 + r)

Here C00(0) is the value at origin, and C̃00 ≡ − ln[1/C00(0)− 1/C00(r)]. Tilded func-
tions are approximated by cubic splines. The evaluation of derivatives w.r.t. r is straight-
forward:

dC00

dr
= −C

2
00 exp(−C̃00)

r

dC̃00

dξ
(34)

d2C00

dr2
=

C2
00 exp(−C̃00)

r2

dC̃00

dξ
− d2C̃00

dξ2
+

(
dC̃00

dξ

)2

(2C00 exp(−C̃00) + 1)


dClm
dr

=
C00

1 + r

dC̃lm
dζ

+ C̃lm
dC00

dr
(35)

d2Clm
dr2

=
C00

(1 + r)2

[
d2C̃lm
dζ2

− dC̃lm
dζ

]
+

2

1 + r

dC̃lm
dζ

dC00

dr
+ C̃lm

d2C00

dr2
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Density is evaluated via Poisson equation as the second derivative of potential, rather
than represented separately. The spherical-harmonic expansion of density coefficients
is defined by (25): Alm(r) = 〈ρlm〉θ,φ(r). The relation between density and potential
coefficients is given by

Clm(r) = − 4π

2l + 1

[
r−l−1

∫ r

0

Alm(s) sl+2 ds+ rl
∫ ∞
r

Alm(s) s1−l ds

]
(36)

If the density is represented by a set of discrete points, Clm(r) is computed using the
definition (27) as

Clm(r) = − 1

2l + 1

[
r−1−l

∑
ri<r

ρlm,i r
l
i + rl

∑
ri>r

ρlm,i r
−l−1
i

]
(37)

B.3.5 Direct evaluation of potential

It is possible to compute potential directly from Poisson equation for a given smooth
density model. Let the density be represented by a Fourier expansion

ρ(R, z, φ) =
mmax∑

m=−mmax

ρm(R, z) ×
{

cos(mφ), m ≥ 0
sin(|m|φ), m < 0

(38)

ρm(R, z) =
1

2π

∫ 2π

0

ρ(R, z, φ) ×


1, m = 0
2 cos(mφ), m ≥ 0
2 sin(|m|φ), m < 0

(39)

The potential generated by this density is also written as a sum of Fourier components:

Φ(R, z, φ) =
mmax∑

m=−mmax

Φm(R, z) ×
{

cos(mφ), m ≥ 0
sin(|m|φ), m < 0

(40)

Each term in the expansion is given by

Φm(R, z) = −
∫ +∞

−∞
dz′
∫ ∞

0

dR′ 2πR′ ρm(R′, z′) Ξm(R,R′, z, z′) , (41)

Ξm ≡
∫ ∞

0

dk Jm(kR) Jm(kR′) exp(−k|z − z′|) , which evaluates to (42)

Ξm =
1

π
√
RR′

Qm−1/2

(
R2 +R′2 + (z − z′)2

2RR′

)
if R > 0, R′ > 0,

Ξm =
1√

R2 +R′2 + (z − z′)2
if R = 0 or R′ = 0, and m = 0, otherwise 0.

The Legendre function Q may be expressed in terms of Gauss’ hypergeometric function

2F1:

Qm(x) =

√
π Γ(m+ 1)

(2x)m+1 Γ(m+ 3/2)
2F1

(
1 +

m

2
,
1

2
+
m

2
;
3

2
+m;x−2

)
. (43)
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To speed up evaluation of Q, we pre-compute the values of 2F1 on a suitably defined grid
and use cubic interpolation to obtain its values instead of direct (expensive) computation
by series summation.

For a discrete point mass set, the potential harmonics are computed as

Φm(R, z) = −
N∑
i=1

mi Ξ(R, z,Ri, zi)×


1, m = 0
2 cos(mφi), m ≥ 0
2 sin(|m|φi), m < 0

(44)

If the density profile is axisymmetric, then ρ(R, z, φ) = ρ0(R, z) is the only term in the
expansion, otherwise we pre-compute the Fourier terms ρm(R, z) on a rather fine grid in
R, z before computing potential, and use 2d cubic spline interpolation for obtaining the
values of ρm used in (41); this introduces a negligible interpolation error. If the requested
values of R, z are outside grid, then the corresponding Fourier term (39) is computed
on-the-fly.

This direct potential is not used in orbit integration, as it does not provide forces and
is very computationally expensive; instead it is used for initializing the cylindrical spline
potential expansion (see next section).

B.3.6 Cylindrical spline potential expansion

For systems far from spherical symmetry (but still reasonably represented by azimuthal
Fourier expansion in φ) the spherical-harmonic expansion is rather inefficient. Instead
we may write down the potential as a Fourier expansion (40), and use 2d cubic spline
interpolation to obtain the values of potential, forces and density at arbitrary point R, z, φ.

The two-dimensional grid in meridional plane covers a box 0 ≤ R ≤ Rmax, −zmax ≤
z ≤ zmax. The extrapolation beyond the box uses the quadrupole approximation of the
mass distribution, with the coefficients computed from a fit to the values of potential at
the outer boundary of the box. The grid is using logarithmic scaling: R̃ ≡ ln(1 +R/R0),
z̃ ≡ sgn(z) ln(1 + |z|/R0). The values of potential are also scaled using the Plummer
weight function:

Φm(R, z) = S(R, z) Φ̃(R̃, z̃) , S(R, z) ≡ S(r =
√
R2 + z2) ≡ 1/

√
R2

0 + r2. (45)

The scaling coefficient R0 is computed from the condition that the value of potential
at origin and the total mass are related by Φ0(0, 0) = −GMtotal/R0.

The values of potential at grid nodes are assigned directly from the potential of the
input model (if available), using the same Fourier transform as in (39), or – if only an
expression for density is given – the direct evaluation of potential (§B.3.5) is used as
the intermediate stage. The latter can also be initialized from a discrete point mass set
(Eq.44).

The evaluation of forces and their derivatives is a straightforward application of (45)
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with the spline derivatives computed by standard expressions. We have

∂Φm

dR
=

R

r
S ′ Φ̃m + S R̃′

∂Φ̃m

∂R̃
, R̃′ ≡ dR̃

dR
, S ′ ≡ dS

dr
, same for z, (46)

∂2Φm

∂R2
=

{
R2

r2
S ′′ +

z2

r3
S ′
}

Φ̃m +
2S ′

r
R R̃′

∂Φ̃m

∂R̃
+ S

{
∂2Φ̃m

∂R̃2
R̃′2 +

∂Φ̃m

∂R̃
R̃′′

}
, (47)

∂2Φm

∂R∂z
= (rS ′′ − S ′) Rz

r3
Φ̃m +

S ′

r

{
zR̃′

∂Φ̃m

∂R̃
+Rz̃′

∂Φ̃m

∂z̃

}
+
∂2Φ̃m

∂R̃∂z̃
S R̃′z̃′ , (48)

∇2Φm = S

{
∂2Φ̃m

∂R̃2
R̃′2 +

∂2Φ̃m

∂z̃2
z̃′2 +

∂Φ̃m

∂R̃

(
R̃′′ + R̃′/R

)
+
∂Φ̃m

∂z̃
z̃′′ − m2

R2
Φ̃m

}
+

+
2S ′

r

{
Φ̃m +RR̃′

∂Φ̃m

∂R̃
+ zz̃′

∂Φ̃m

∂z̃

}
+ S ′′ Φ̃m . (49)

B.3.7 Ferrers potential

The density profile of this model is given by

ρ(x, y, z) =
105

32π

M

abc

{
(1−m2)2 , m ≤ 1
0 , m > 1

, m2 ≡ x2

a2
+
y2

b2
+
z2

c2
, a > b > c. (50)

The expressions for potential and its derivatives for the Ferrers potential (with index
m = 2) are given in the appendix of [15], and they use a set of 20 coefficients3. Inside the
region of non-zero density, these coefficients are pre-computed at the time of initialization,
but outside they need to be computed afresh at each force evaluation, which makes it
rather costly; furthermore, for large radii (and also for axis ratios close to unity) the
errors in calculation of elliptic functions become unacceptable. Therefore, for large r we
approximate the potential by its first three spherical-harmonic coefficients:

Φ(x, y, z) = −M
r

(
1 +

(2c2 − a2 − b2)

36 r2

(2z2 − x2 − y2)

r2
+

(b2 − a2)

12 r2

(y2 − x2)

r2

)
. (51)

For r > 4a this approximation is accurate to better than 10−4 for potential and forces.

B.4 Penalized spline approximation

Initialization of Spline potential from a set of point masses requires representing the
radial dependence of spherical-harmonic expansion coefficients, which are computed at
each particle’s radius, by a small number of terms. In other words, we seek to find
best-fit spline approximation to the “true” radial dependence of Clm(r). In addition, the
coefficients calculated from a point mass set are subject to discreteness fluctuations, in
other words, they represent the actual smooth density model, which is sampled by this
set of particles, with some random noise which needs to be smoothed out.

3There is a sign error in coefficients W210,W021,W102 in that paper, but not in the accompanying
code.
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In this section we describe the penalized linear least-square fitting method used for
this purpose. Suppose we have the original data points xi, yi, i = 0..Nd − 1, and we need
to find the smooth function ŷ(x) which minimizes the following functional:

Nd−1∑
i=0

{yi − ŷ(xi)}2 + λ

∫
{ŷ′′(x)}2

dx (52)

Here λ ≥ 0 is the smoothing parameter. Standard mathematical arguments [16] show
that the solution to the above equation is given by a cubic spline with knots at each data
point xi, but for the present purposes it is impractical (Nd may be as large as 106). Instead,
we require ŷ(x) to be a cubic spline with knots at Xk, k = 0..Nk−1, number of knots being
O(10). Denote Yk the values of spline at its knots; a cubic spline is uniquely specified
by Xk, Yk and two additional parameters, for example the derivatives at endpoints (the
standard case of natural cubic spline is when the second derivatives at endpoints are
zero). Another way to represent ŷ(x) is via b-splines, that is, ŷ(x) =

∑Nb−1
p=0 wpBp(x),

where Bp(x) are basis functions, each of them is non-zero at most on four consecutive
intervals Xk..Xk+1. The number of basis functions is Nb = Nk + 2.

Equation (52) is solved by the following linear system:

(A + λR)w = z , A ≡ CT C , z ≡ CTy (53)

C ≡ Cip ≡ Bp(xi) , R ≡ Rpq ≡
∫
B′′p (x)B′′q (x) dx , w ≡ wp , y ≡ yi (54)

In other words, given the x-coordinates of original data points xi and of spline knots
Xk, we construct the b-spline basis functions Bp(x), calculate the matrices Cip, Apq and
Rpq, and solve the equation (53) for any given set of data points yi and smoothing factor
λ.Note that the size of linear system is only Nb � Nd. An efficient way of solving the
minimization problem for multiple values of y, λ is described below [17].

1. Obtain Cholesky decomposition of A = L LT , where L is a lower triangular matrix.

2. Obtain singular value decomposition of Q ≡ L−1 RL−T = U diag(S)VT , where U and
V are square orthogonal matrices (so that U−1 = UT ), and the diagonal matrix in
between them holds the vector of singular values S. Since the matrix Q is symmetric
positive definite, U and V are the same matrix (so in effect SVD is just eigenvalue
decomposition). Next, obtain another auxiliary matrix M ≡ L−T U.

3. Now for any vector of data points y and value of smoothing parameter λ, the
solution of (53) for weight coefficients w is given by first computing z = CTy and
then setting

w = M (I + λ diag(S))−1 MT z (55)

In the case when λ = 0, step 2 is not necessary, as the solution is given by

w = L−TL−1z (56)
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The quality of fit is usually assessed by residual sum of squares (RSS), which is the
first term in (52). In case of penalized smoothing, several modified criteria are used, for
example, generalized cross-validation score (GCV), or Akaike information criterion (AIC):

GCV ≡ RSS/Nd

(1− EDF/Nd)2
, AIC ≡ ln(RSS) +

2 EDF

Nd − EDF− 1
, where (57)

RSS = |y|2 − 2wTz + |LTw|2 , and EDF = tr(I + λ diag(S))−1 =

Nb−1∑
p=0

1

1 + λSp

is the equivalent number of degrees of freedom (varies from Nb for λ = 0 to 2 for λ→∞,
in which case the smoothing spline is just a two-parameter linear regression).

Standard practice is to choose λ which minimizes GCV or AIC. In practice, for Nd �
Nb this results in very little smoothing, as RSS invariably grows with increasing λ and
EDF/Nd changes only from a small number Nb/Nd to an even smaller one 2/Nd. So
the conventional criterion may only suppress small-scale noise (variations of y on scales
much smaller than distance between knots). In the present application, we expect most
of the larger-scale fluctuations in radial dependence of SH coefficients to be dominated by
discreteness noise as well (in the simplest density models, all coefs typically have only one
outstanding maximum in the entire range of radii). So we may need to smooth more than
“optimal”, which is achieved by finding a value of λ which yields the value of AIC higher
than AIC(λ = 0) by a pre-defined parameter, ∆AIC. The justification of this approach
is that if the non-smoothed regression describes the true curve reasonably well (i.e. with
small RMS), then increasing AIC by a moderate constant, say 1-2, will increase RMS by
a factor of few while still keeping it small. On the other hand, for the case when the data
is noisy and wildly fluctuating, RMS is quite large even for non-smoothed regression, so
that increasing it by a factor of few will produce a much smoother fit, probably even a
linear fit (in which case the data is believed to be consistent with pure noise and discarded
altogether).

B.5 Statistics of pericenter passages

In some applications, it is important to distinguish between centrophilic and centrophobic
orbits. The first may approach arbitrarily close to the origin of coordinates (examples
include non-resonant box orbits, pyramids and a substantial fraction of chaotic orbits),
the second do not come closer than a certain distance from the center (like usual loop
orbits). As part of orbit analysis, the statistics of pericenter passages is examined to
determine if the orbit is centrophilic or not, or, more generally, what is the distribution of
squared angular momentum values recorded at pericenter passages (defined as moments
when ṙ = 0 and r̈ > 0).

Define L2
peri,k, p = 1..Nperi as the values of squared angular momentum recorded at

pericenter passages, sorted in ascending order. It appears that for most orbits the distri-
bution of these values is linear at small p, so we fit a linear regression

L2
peri,k = L2

min + s× k/Nperi + δk , k = 1..Nfit. (58)
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Here Nfit is typically 0.1Nperi (but in addition we require that 10 ≤ Nfit ≤ 50), so
we study only the low-L part of the distribution. The parameters L2

min and s are to be
estimated from the regression, and δk are the residuals. Additionally, we fit the same
distribution to a one-parameter regression

L2
peri,k = s′ × k/Nperi + δ′k, (59)

and compare the statistical significance of the fits, by standard χ2 analysis. Since we do
not have any intrinsic “measurement errors”, we simply assign the intrinsic dispersion
σ2

fit, same for each point, from the condition

σ2
fit =

∑Nfit

k=1 δ
2
k

Nfit − 2
, (60)

which is a standard practice giving exactly unity for χ2 per number of degrees of freedom
(d.o.f.) Nfit − 2. Next, we do the same for the one-parameter regression and compute

∆χ2 ≡ χ2
one−param − χ2

two−param =
1

σ2
fit

Nfit∑
k=1

δ′2k − (Nfit − 2) (61)

Now the quantity ∆χ2 should have a 2-d.o.f. χ2 distribution, and we require it to
be less than a certain threshold ∆χ2

thr to accept the hypothesis that the one-parameter
fit is good enough. In other words, we put L2

min = 0 if it happens to be < 0 in (58)
or if ∆χ2 < ∆χ2

thr = 11.8 in (61), which is a 3-σ deviation for 2-d.o.f. χ2 distribution.
Otherwise we take the best-fit value from the two-parametric regression and assign the
fitsignificance parameter as the deviation of L2

min from zero, measured in σ’s. The
L2slope value is assigned to either s or s′ (depending on which regression is adopted).
Another parameter measuring the reliability of the fit is

fitscatter ≡ σfit/σtypical , where σtypical ≡
√
Nfit s/Nperi (62)

is the “natural” scale for the magnitude of residuals. A value larger than ∼ 0.5 for
fitscatter usually indicates that the distribution of angular momenta is not well de-
scribed by a linear regression.
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Example of fitting the distribution of L2

at pericenter passages by a linear regres-
sion with (dashed green, eq. 58) and with-
out (dotted blue, eq. 59) constant term.
Values of L2

peri are sorted in ascending or-
der, only lowest 10% of points are used in
the fit; error bars are assigned from (60),
with the fitscatter parameter (62) be-
ing ' 0.3. The fit with zero intercept
(L2

min = 0) is just about 3 standard de-
viations worse than the two-parameter fit
(∆χ2 = 12.3 in eq. 61). This orbit is quite
likely to be centrophilic but will not be la-
belled as such by the 3σ criterion; a typ-
ical centrophobic orbit has a 102 − 104 σ
deviation of L2

min from zero.
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B.6 Solving the optimization problem

In general, the Schwarzschild modelling is formulated as the problem of finding weights of
orbits wo ≥ 0, o = 1..No such that Nc constraints are satisfied via mc =

∑No

o=1 tocwo, where
toc is the contribution of o-th orbit to c-th constraint. For instance, in the Classic model,
toc is the time spent by each orbit in each cell of the spatial grid. The linear system may
contain the constraints from several CSchwData objects: density model (Classic, Cylindri-
cal, BSE or SHGrid), kinematics (velocity anisotropy or angular momentum distribution),
or, in principle, any other kind of constraints (e.g. from observations of surface brightness
or line-of-sight velocity distribution), all combined in one set by the CSchwModel object.

In practice, not all constraints may be satisfied exactly, so there are two options to al-
low for the deviation from exact solution, given by the parameter constraintPenaltyLin.
The first case, when constraintPenaltyLin>0, adds the penalty for constraint violation
to the objective function which is minimized by the solver. This is done by introducing
additional 2Nc non-negative variables µc, νc and rewriting the linear system as

mc =
No∑
o=1

tocwo + µc − νc , c = 1..Nc (63)

The objective function is

F = α1

Nc∑
c=1

(µc + νc) + α2

Nc∑
c=1

(µ2
c + ν2

c ) + Fadditional , (64)

Here α1 ≡ constraintPenaltyLin, and α2 ≡ constraintPenaltyQuad.
In the second case we allow the deviation in the constraint value not to exceed α0|mc|.

This is achieved by adding another Nc equations to (63):

µc + νc = α0|mc| , α0 ≡ −constraintPenaltyLin (65)

No additional terms are introduced in the objective function in this second case.
It is parametrized by the fractional tolerance α0, given by the same parameter
constraintPenaltyLin if it is negative (its absolute value it taken).

The case when constraintPenaltyLin=0 but constraintPenaltyQuad>0 is equiva-
lent to the non-negative least-squares (NNLS) fitting method; if the former is not zero,
the latter still may be used to discourage strong violation of just a few constraints in favor
of moderate violation of a larger number of them.

The last equation in the linear system requires that the sum of all orbit weights is equal
to the total mass of the model, and it must be satisfied exactly. All these possibilities are
shown in the diagram below, which depicts the linear system to be solved. White blocks
represent the original set of Nc + 1 equations for No variables (one additional for the
total mass); if constraintPenaltyLin=0 and constraintPenaltyQuad=0, these are the
only ones to be solved. Yellow block shows the augmented system having 2Nc additional
variables. Cyan block shows the case with the tolerance range (it also has the additional
variables and Nc more equations).
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×
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wo
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µc
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=
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mc
...
...

β|mc|
...

Mtotal

The objective function may have additional terms Fadditional: the quadratic regulariza-
tion term is given by

Fquadratic =
λ

No

No∑
o=1

(
wo
w̃o

)2

, λ ≡ regularization (66)

Here w̃o is the prior on orbit weight; in the default case without refinement of initial
conditions (regulated by weightSkewFactorE, weightSkewFactorL parameters) this is
just the average mass per orbit Mtotal/No.

If one wishes to increase or reduce contribution from chaotic orbits (or, in prin-
ciple, any subset of orbits based on their properties, evaluated via an instance of
COrbitFilteringFunction), then an additional term is introduced in the objective func-
tion, given by

Fbias =
µ

Mtotal

No∑
o=1

wo × E({orbit}) , µ ≡ chaoticPenalty, (67)

E =

{
1 if Lyapunov exponent Λ > Λthreshold

Ξ(log10(FDR/FDRthreshold)) otherwise
, Ξ(x) ≡


0, x < −0.5
0.5 + x, −0.5 ≤ x ≤ 0.5
1. x > 0.5

The latter equation explains how the filtering function for chaotic orbits works: if the
Lyapunov exponent is greater than the threshold chaoticMinLambda, then the evaluation
function equals 1, otherwise its value is 0 for “strongly regular”, 1 for “strongly chaotic”
orbits and in between for the intermediate case – based on the value of frequency diffusion
rate compared to the threshold chaoticMinFreqDiff.

The normalization factors in (64, 66, 67) are arranged so as to keep the magnitude
of objective function independent of No and Mtotal; in addition, the values of mc and toc
entering the linear system are normalized by factors m̃c which are specific to the given
variant of Schwarzschild model. This is introduced to reduce the strong variation in
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magnitude of coefficients in BSE and, to a lesser extent, Spline models. For instance, in
the Classic model the normalization coefficient of a cell in a given shell is the expected
shell mass for a spherically-symmetric density profile, divided by the number of cells in
the shell.

The linear system and the objective function are passed to the instance of linear or
quadratic optimization solver, which at present may be chosen from one of three variants:
BPMPD (an external program), CVXOPT (a Python-based solver) and GLPK (C library
for linear programming). The interface between the Schwarzschild model object and the
solver is defined in the abstract way, allowing to isolate the details of Schwarzschild mod-
elling from the implementation of the solver (it may not even need to be a linear/quadratic
one).

B.7 Multi-component models

smile supports multi-component potential and Schwarzschild models in the following
way. The potential used for orbit integration may consist of an arbitrary number of
components, each one given by its own parameters. For instance, one may have an ex-
ponential disk represented by a CylSpline potential initialized from an ExpDisk density
model, a triaxial Ferrers bar, a slightly non-spherical halo represented by a Spline po-
tential with the density coming from an Ellipsoidal model with variable axis ratio, and
a central massive black hole. These three extended components reside in individual sec-
tions [Potential], [Potential1] and [Potential2] of the INI file, and the black hole
mass is attached to the first of them. The Schwarzschild model could consist of two
species, one for the disk plus bar, the other for the halo; the first could use the Cylin-
drical spatial grid, the second – SHGrid; we use JeansAxi initial conditions generator
for the first one and Eddington for the second one, and additionally enforce velocity
isotropy for the halo by setting constrainBeta=true. To specify which of the poten-
tial components constitute the target density profile for SM , one uses the INI parameter
[Schwarzschild_model]/densityComponents – it should contain 0,1 for the first species
and 2 for the second one. Each of the two models is constructed separately, and exported
to an N -body file (the first one will also contain a particle corresponding to the massive
black hole). Then one may stack together these two files and run an N -body simulation.
Thus the only common requirement for the two species is that they use the same total
potential; there is no way of using a density model for SM that is not included as part of
this composite potential.

B.8 Generation of initial conditions for orbit library

Even though the Schwarzschild method is “self-tuning” in the sense that it automatically
picks up the orbits that are suitable for the self-consistency of the model, its performance
still depends on the method of generating the initial conditions (IC) for the orbit library.
For instance, if the user wishes to create a spherical model with purely circular orbits,
the method will be unable to do so unless ICs were arranged to contain only such orbits.

ICs for frequency map are chosen from one or more “start spaces” at the same value
of energy. For the Schwarzschild model, we do not use the (commonly employed) scheme
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of having a composition of a small number (few dozens) of discrete energy levels repre-
sented by these start spaces. Instead, a true three-dimensional density of the model is
sampled as faithfully as possible, using a Monte Carlo sampler that assigns positions in
proportional to the local density. Then the initial velocities are assigned using one of
the available methods, described below. The choice of method is governed by the INI
parameter [Schwarzschild_model]/ICgenerator.

B.8.1 Eddington sampler

It draws velocities from the Eddington isotropic distribution function f(E) constructed
for a spherical mass model (Sec. B.2) that approximates the true 3d density profile of the
given mass component.

B.8.2 Spherical Jeans equation

In this method we use a spherical Jeans equation constructed for the same approximating
mass model as in the previous method, but drawing velocities from a Gaussian velocity
distribution function instead of the self-consistend energy distribution function. The
adjustable parameter is the velocity anisotropy coefficient β ≡ 1 − σ2

t /(2σ
2
r), where σt

and σr are the velocity dispersions in (two) tangential and (one) radial directions; β = 0
corresponds to isotropy, β = 1 – to purely radial and β = −∞ – to purely circular orbits.

B.8.3 Axisymmetric Jeans equation

Let ν(R, z) be the axisymmetrized density of the given mass component, and Φ(R, z)
be the axisymmetrized total gravitational potential. They are computed as averages
over the azimuthal angle φ of the actual density and potential models, if the latter are
not axisymmetric themselves. Following [18], we introduce the “meridional anisotropy”

parameter βm = 1− v2
z/v

2
R. Then the Jeans equations are

v2
z(R, z) =

1

ν(R, z)

∫ ∞
z

ν(R, z′)
∂Φ(R, z′)

∂z′
dz′, (68)

v2
φ(R, z) =

[
v2
z +

R

ν

∂(νv2
z)

∂R

]
/(1− βm) +R

∂Φ

∂R
.

The mean velocities in R and z directions are assumed to be zero, but vφ is generally
non-zero and not provided by the equations. We may parametrize it by k such that

vφ = k
√
v2
φ − v2

R. k = 1 corresponds to a semi-isotropic rotator (equal velocity dispersions

in R and φ directions); k = 0 yields no net rotation.
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B.9 Rotating frame

If the model has figure rotation with the angular velocity Ω (about z axis), the equations
of motion in the x− y plane are modified as follows:

ẋ = vx + Ωy, v̇x = −∂Φ
∂x

+ Ωvy,

ẏ = vy − Ωx, v̇y = −∂Φ
∂y
− Ωvx.

(69)

In other words, we use the coordinates in the frame that co-rotates with the figure of po-
tential, so that the latter is a time-independent function of these coordinates, but consider
the velocities in the inertial frame which coincides with the instantaneous orientation of
the rotating frame. The velocities are canonically conjugate momenta to the coordinates.
Instead of total energy, the Jacobi constant is the integral of motion:

EJ ≡ Φ(x, y, z) +
v2
x + v2

y + v2
z

2
− Ω(xvy − yvx) = (70)

= Φeff(x, y, z) +
ẋ2 + ẏ2 + ż2

2
, Φeff(x, y, z) ≡ Φ(x, y, z)− Ω2 (x2 + y2)

2

The choice between using v or ẋ depends on the particular task: for example, to
depict the isocontours of effective potential, and locate periodic orbits in the Poincaré
surface of section, we use the second expression with ẋ = 0, while the initial conditions
for orbits are stored in the inertial frame, using x, v, and the reference orbital period is
computed without taking into account the rotation at all (even though no orbit will have
a trajectory along x axis if Ω 6= 0).

The introduction of rotating frame has different meaning for different ODE integrators:
IAS15 and Hermite integrators use the formulation of equations of motion in terms of
{x, ẋ}, while other integrators use canonical momenta. Symplectic Runge-Kutta does
not work at all, and Hermite needs two corrector steps to achieve required 4th order
of approximation (at present, the forces get recomputed twice, even though the second
correction is only required for the non-inertial forces).

For any finite-mass model and Ω 6= 0 we locate the Lagrangian points along x and y
axes, in which the first derivatives of the effective potential are zero. The value E× of the
effective potential at the saddle point along x axis marks the boundary of region inside
corotation: orbits with EJ > E× may in principle escape to infinity. As the volume of
phase space is infinite for EJ > E×, it cannot be sampled by random initial conditions at
given EJ .

C Additional programs

C.1 mkspherical

This program uses spherical mass models for two different purposes and created from
several possible sources: (a) a supplied table with r,M(r) values specifying enclosed
mass as a function of radius, or (b) an N -body snapshot, in which case it first fits a

50



penalized spline to compute M(r) from the snapshot, or (c) an arbitrary smile potential
with parameters provided as command-line arguments, or (d) a potential expansion file
(Sec. 4.4.4), or (e) an INI file with all potential parameters (Sec. 4.1). The spherical
model, in turn, may be used to compute a number of parameters as spline-interpolated
functions of radius (potential, radial/circular period, distribution function via Eddington
inversion formula, diffusion coefficients, etc.), or to generate an N -body snapshot, in
which particles are distributed according to the given density profile and isotropically
in velocities. In short, this is a generalization of tools such as halogen or spherICs for
creating a spherical isotropic model with a given arbitrary density profile, and at the same
time a useful tool to study dynamical properties of a given N -body system (or, rather,
its spherically-symmetric isotropic counterpart).

Parameters [default values]:

• file=[] input file, which determines the operation mode depending on its extension:
(a) .mass, (d) .coef_***, (e) .ini, (b) anything else; mode (a) may also be forced
by providing another argument density=Coefs. In the mode (a) this file should
contain at least two columns: r,Menclosed(r). Radii and masses must be in ascending
order, nonzero value of M(0) indicates the presence of central point mass (e.g. a
supermassive black hole). In the mode (b), the input file is interpreted as an N -
body snapshot in one of the known file formats (Sec. 4.5). In this case, the spherical
model is constructed by fitting a penalized smoothing spline to the log-scaled values
of r,M(r). More specifically, this is done as follows:

– particles are sorted in radius;

– an “extrapolated total mass” is found such that the dependence of
log[M(r)/(Mtot − M(r))] vs. log(r) is best described by a linear function
for the outermost few percent points. This extrapolated mass has nothing
to do with the subsequent total mass in the spherical model, but this step is
required in order to ensure that the log-scaled mass defined above does not ex-
hibit sharp variations at outer radii, so that spline fitting results in least bias.
For a density profile which declines as a power-law in radius, this extrapolated
mass will coincide with the true extrapolated total mass, even if the profile
is sharply truncated at some finite radius; otherwise this is just an internal
scaling parameter.

– a smoothing spline is fitted to the scaled quantities defined above. This will,
as a side result, fit a power-law to M(r) at small radii. The degree of spline
smoothing is adjusted by smoothing parameter. The spline uses a small num-
ber of nodes (∼ 15 − 50), which is chosed automatically, but may also be
controlled by the command-line parameter Ncoefs_radial; similarly, its ra-
dial extent may be adjusted by splineRmin and splineRmax parameters.

• density=[] turns on the mode (c), in which the spherical model is constructed
from a given (possibly non-spherical) density profile from the list of smile density
models. In this case, one may specify additional parameters such as mass=...,
scalerad=..., etc. (see the list of INI file parameters in the [Potential] section).
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• mbh=[0] is the additional point mass (representing a supermassive black hole) at
the center; may be used in any mode except (e).

• smoothing=[1] adjusts the spline smoothness; less smoothing means somewhat
better representation of wiggles in density, at the expense of distribution function
wildly oscillating and possibly becoming negative. If the computed quantities seem
to be weird, this is the first parameter to play with.

• outtab=[] name of output text file containing the following columns:
r M(r) Φ ρ f(E) M(E) Tepi Trad rcirc Lcirc σ1d σlos Σ DEE DE DLL DRR/R
The dynamical quantities are given as functions of radius, projected radius, or en-
ergy (E = Φ(r)). f(E) is the distribution function, M(E) ≡

∫ E
−∞ f(E ′)g(E ′)dE ′ is

the total mass of particles having energies lower than E, where g(E) ≡ 4π2TradL
2
circ

is the density of states [9, Eq.4.55]. Tepi and Trad(E) are the epicyclic and radial
periods, rcirc is the radius of circular orbit and Lcirc is the angular momentum of
that orbit. σ1d(r) is the conventional one-dimensional velocity dispersion, σlos(R)
is the line-of-sight velocity dispersion at given projected radius R, and Σ(R) is
the surface density at projected radius R. Finally, DEE(E) and DLL(E) are the
diffusion coefficients in energy and angular momentum, DE is the drift coefficient in
energy, and DRR/R|R=0 is the limiting value of diffusion coefficient in dimensionless
squared angular momentum R ≡ L2/L2

circ at small R, as given, for instance, in
Chapter 5 of [10]. These coefficients depend not only on the mass model itself, but
on the number of particles in the model. To obtain the actual values for a given
single-mass N -body snapshot with particles of mass m?, multiply the values given
in the table by m? ln Λ, where the Coulomb logarithm ln Λ is usually taken to be
∼ lnN . The coefficients represent orbit-averaged values, and the relaxation time
in energy or angular momentum may be estimated as the inverse of (DEE/E

2)
and DRR, correspondingly. The more familiar local relaxation time [9] is given by

Trel =
0.34σ3

1d(r)

m?ρ(r) ln Λ
.

• rmin=[], rmax=[] inner and outer radii for the output table; as usual, a log-scaled
grid is created between these radii and the quantities are output at the nodes of this
grid. Default values are chosen to enclose all interesting features in the model.

• npoints=[100] number of output grid points. The output grid doesn’t need to be
related to the input r,M(r) values from the text file, in particular, it is instructive to
see how the model is extrapolated to smaller and larger radii (sometimes, however,
is does weird things). If npoints=-1 then the output grid is the same as input
set of radial points (or the nodes of interpolation spline if the input is an N -body
snapshot).

• outsnap=[], nbody=[] – if given, an N -body representation of the spherical model
is created and written as a snapshot file.

• outformat=[Text] – format of the output snapshot file (Text/Nemo/Gadget, may
be abbreviated to one letter).
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• quiet=[0] – specifies how random are particle positions in the output snapshot: 0
– totally random, 1 – random but each one within its own interval of equally-spaced
r(M), 2 – fixed at equal intervals of r(M).

C.2 renderdensity

Create a visual representation of an arbitrary smile density or potential model, by pop-
ulating the space with point masses in proportion to local density. No velocities are
assigned to the particles. The input density model may be specified in one of the follow-
ing modes: (a) as the analytic density profile, (b) as a potential expansion constructed
from an analytic density profile, (c) as a potential coefficients file, or (d) as parameters
provided in an INI file.

Parameters:

• density=[] – name of the density model in the modes (a) and (b); additional
parameters are the same as for mkspherical (see Sec. 4.1).

• type=[] – type of the potential expansion to be constructed from the density model
in mode (b), optional: if not given, the density model is used directly as mode (a). It
may be instructive to render the same density profile twice – as the original density
model, and as the approximation from the potential expansion, to see the possible
artifacts from the approximation.

• file=[] – input potential coefs file in mode (c), see Sec. 4.4.4, or an INI file with
all required parameters in mode (d); the choice depends on the file extension.

• out=[required] – output snapshot file.

• nbody=[required] – number of particles to represent the density profile.

• outformat=[Text] – format of the snapshot file (Text/Nemo/Gadget).

C.3 testaccuracy

This program checks the accuracy of potential approximation constructed from an N -
body snapshot or from an analytic density profile, using one of the potential expansions
available in smile (BSE, Spline, CylSpline, etc.). It compares the density from the original
profile and from the approximation, by constructing a spatial grid (same as in Classic or
Cylindrical Schwarzschild models) and computing mass of grid cells from both density
models:

• If the original model was an N -body snapshot, then the masses of particles residing
in each grid cell are summed and compared against the integrated density from
the potential expansion. Due to finite-N fluctuations, the two numbers are not
expected to agree exactly, but the relative difference should be of order N

−1/2
points in cell

if the approximation is faithful. In this case, the χ2-like quantity is computed and
reported as the measure of quality of the potential approximation, and it should be
around unity for it to be good.
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• If the original model is given by a smooth density profile, then the cell masses
obtained by integrating the original and approximating models are compared; the
smaller the difference, the better. Reported is the mean integrated square error
(MISE) M−1

total

∫
d3r ρexact(r) [1− ρapprox(r)/ρexact(r)]2.

Parameters:

• type=[required] – type of potential expansion (BSE, BSECompact, Spline, Cyl-
Spline).

• file=[] – name of input N -body snapshot file in one of recognized formats
(Sec. 4.5), or

• density=[] – name of the smooth density profile, along with other optional param-
eters (same as in the [Potential] section of INI file, Sec. 4.1)

• out=[] – optional name of output files: one file stores the expansion coefficients
and has the appropriate extension (.coef_***) depending on the potential type,
another file with the extension .grid contains the coordinates of the center of each
cell and their masses computed using two methods. If the input file is given, its
name serves as the base of the output files.

• cylGrid=[false] – use Classic (false) or Cylindrical (true) grid.

• numRadialCoefs=[20], numVerticalCoefs=[15], numAngularCoefs=[] – grid
dimensions; default value for the latter parameter depends on the order of angular
expansion.

C.4 snaporbits

Perform orbit analysis for a N -body simulation from the input file contains multiple time
snapshots, output OrbitLibrary file (Sec. 4.2) with orbit properties (i.e. trajectories of
individual particles from the snapshot are analyzed). Useful to compute orbit population
and/or proportion of centrophilic orbits; chaotic properties are not very meaningful. To
analyze what kind of orbits are possible in a smoothed potential of an N -body model, it
is better to use the entire smile machinery.

Parameters:

• in=[required] – input file in nemo format, containing multiple (no less than sev-
eral hundred) time snapshots of an N -body system in evolution, equally spaced in
time. The test particles are traced from one snapshot to the other assuming that
their indices are unchanged, so each particle produces an orbit.

• out=[required] – output OrbitLibrary file.

• file=[] – file with potential coefficients, or INI file with potential parameters. If no
file is given then the first snapshot from the input file is taken to create a potential
model. The potential is only used to compute Torb, so it needs not be a very accurate
representation.
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• ncoefs_radial=[20], ncoefs_angular=[6], symmetry=[t], type=[Spline] –
parameters for potential approximation if it is created from the first N -body snap-
shot and not read from a coefs of INI file: number of radial and angular terms,
symmetry type ([n]one, [r]eflection, [t]riaxial, [a]xisymmetric, [s]pherical), and the
potential approximation type (BSE/BSECompact/Spline/CylSpline).

• mbh=[0] – additional point mass (black hole) at the origin (for all variants of poten-
tial specification this additional mass needs to be provided separately, since coefs file
does not contain information about Mbh, and input snapshot for creating a potential
approximation should not contain it either).

C.5 measureshape

Computes axis ratios and orientation of principal axes of an N -body snapshot, as functions
of radius. Use either equidensity ellipsoid axis ratios (if density is decreasing function of
radius), or moment of inertia tensor. (Doesn’t use smile).
The snapshot file may contain multiple time moments; presently only NEMO snapshots
are processed.

Parameters:

• in=[required] – input snapshot file;

• center=[t] – whether to center the input snapshot on the median value of each
coordinate;

• out=[] – if provided, output centered and rotated snapshot to this file;

• nbins=[20] – number of bins in radius for which to compute the axes;

• cutoff=[0.999] – fraction of total mass contained in the outermost bin;

• minbin=[0] – fraction of mass in the innermost bin; 0 by default means 1/nbins,
i.e. all bins contain equal mass, otherwise bin masses are spaced quasi-exponentially
in enclosed mass;

• cumul=[t] – each bin contains all mass interior to given radius [t] or only the mass
in the (ellipsoidal) shell between the given and the previous radius [f]; the latter
option should be used with care as it may not always converge (e.g. if the ellipsoid
axes are varying rapidly with radius);

• dens=[f] – method of computing the axis ratio:

– Equidensity ellipsoid [t], provided that density is a decreasing function of radius
and that density information is present in the snapshot (used in [19]).

– Inertia tensor [f] of particles with iteratively determined axes (see [20] for an
extended discussion on variations of this method). The axes are determined
from the inertia tensor of particles within ellipsoidal volume, with the ellipsoid
itself using the axes determined on the previous iteration, until it converges.
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• compact=[f] – print all data for given time in one line [t] or in nbins lines [f];

• angles=[f] – print the angles between x and z axes and the major and minor axes
of the ellipsoid).

C.6 energydiff

Computes the rate of energy and angular momentum diffusion in an N -body simulation
of a near-equilibrium system. Useful to check that the system under study is indeed in
equilibrium, and that all changes in particles’ energies are due to two-body relaxation.
All particles are assigned to nbins bins, according to their initial energy. The program
tracks the squared change of total energy and angular momentum for each particle in a
simulation containing multiple time snapshots, and averages them over particles belonging
to the same energy bin. For a diffusion process, the square change in the integral of motion
should grow linearly with time, with the slope being the diffusion coefficient. Accordingly,
the best-fit slopes for energy and angular momentum are reported as functions of energy.

Parameters:

• in=[required] – input NEMO snapshot file.

• nbins=[100] – number of bins in energy.

• minbin=[0] – fraction of mass in the innermost bin (0 by default means 1/nbins).

• rel=[f] – if false, report the diffusion coefficients for 〈∆E2/t〉 and 〈∆L2/t〉, if true,
report the diffusion coefficients for relative (dimensionless) quantities 〈(∆E/E)2/t〉
and 〈∆R2/t〉, where R ≡ L2/L2

circ is the squared angular momentum normalized to
that of a circular orbit with the same energy. To compute the latter quantity, the
program uses a spherical mass model (Sec. B.2) approximating the N -body system.
It could be constructed from either the first snapshot of the simulation (default), or
specified by the r,M(r) file (same as input file for mkspherical program, Sec. C.1).

• tab=[] may provide this mass model file for computing L2
circ(E). If not given, the

first snapshot is used. There is no need in smoothing the input snapshot as done in
mkspherical.

• mbh=[0] – additional point mass at the center (in general, if a simulation contains
a black hole, it should be filtered out, e.g. by the NEMO tool snapmask, before
computing the diffusion rate, otherwise the data for inner bins will be distorted.
This parameter is only relevant for computing Lcirc in the case rel=t).

• outdelta=[$in.delta] – output file containing 〈∆E2〉, 〈∆L2〉 (or their dimen-
sionless counterparts in the case rel=t) for each bin and each time. It contains
2*nbins+1 columns, the first is the snapshot time, and then two numbers for each
energy bin. Each row corresponds to one time snapshot. The first line lists the
average and maximal value of energy for each bin. This file may be used to check
that the squared changes in E and L indeed grow linearly with time.
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• outcoef=[$in.difcoef] – output file containing summary information, i.e. fitted
diffusion coefficients for each energy bin and their uncertainties. Each line has 5
values: average (initial) energy of particles in each bin, 〈∆E2/t〉 and its relative un-
certainty, and the same for L (or analogous diffusion coefficients for dimensionless
values). These coefficients may be compared to the predictions of two-body relax-
ation theory, by using a tab file from mkspherical (Sec. C.1) for the same mass
model. The figure below shows a comparison for a N = 105 particle spherical γ = 0
Dehnen model, plotted in gnuplot.
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